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Abstract

Saturn’s rings exhibit a wealth of radial structure cov-
ering a vast range of lengthscales [1]. On the short-
est scales, quasi-periodic density variations of wave-
lengths ranging from one to a few hundred meters are
observed intermittently populating several locations of
the inner A-ring as well as the less opaque areas of the
B-ring[2].

While external phenomena such as perturbations
due to Saturn’s inner satellites would explain other
structures in the rings [3, 4, 5], it seems that these
oscillatory density variations have an intrinsic origin
related to some kind of instability in very dense col-
lisional systems. A promising explanation for this
sub-kilometer axisymmetric structures is the viscous
overstability [6]. This mechanism, contrary to the vis-
cous instability originally proposed, takes place when
the dynamic shear viscosity grows sufficiently rapidly
with the surface density. In this way, the collisional
flow is directed from sub-dense regions to over-dense
regions, such as in a viscously stable ring [7]. How-
ever, the system overshoots during the smoothing pro-
cess and therefore generates sinusoidal perturbations
with respect to time but with exponentially growing
amplitudes (in the linear approximation). The super-
position of these waves, with amplitudes saturated due
to non-linear phenomena, could well yield structures
such as those seen in the B-ring [16].

Viscosity overstability has been studied in the con-
text of hydrodynamic and kinetic models [8, 9], as in
N-body simulations [6, 10]. Self-gravitational N-body
simulations were the ones that directly demonstrated
for the first time the formation of spontaneous growth
of axisymmetric oscillations. However, these struc-
tures can also be observed in non-gravitational sim-
ulations but shifted to much greater optical depth (~
3-4) [6]. Therefore, the development depends sensi-
tively on the collisional dynamics of the ring particles
[7] and is not linked to the gravitational interaction be-
tween them. So far, the theoretical knowledge of over-
stable ring systems rely mainly on results based on ap-

proximative treatments of the self-gravity in terms of a
enhanced ratio of the vertical to planar oscillation fre-
quency [17]. This approximation leads to the genera-
tion of structures at optical depths > 1. The trick has
been widely used in hydrodynamic models that study
both linear and non-linear weak evolution [11, 12]. In
spite of this, including self-gravity may instigate non-
axisymmetric wake structures that could compete with
the overstables ones and alter their properties [10], not
only the conditions for the onset but also their satura-
tion. In this way, self-gravitational simulations would
seem to limit the growth of excited wavelengths com-
pared to collisional only simulations [13, 14]. This is
illustrated in Figures 1 to 4.

We present a systematic study of fully self-
gravitational large scale N-body simulations, expand-
ing upon the study of [6]. For this purpose a new
method is used, combining the tree-based routines of
the open source REBOUND [15] with soft-particle
impacts. We examine the factors which determi-
nate the threshold density required for the triggering
of overstability, both in non-gravitational and self-
gravitational cases, and compare the saturation wave-
lengths.

010 12
ORBITS

Figure 1: Stroboscopic space-time diagram of a non-
gravitating simulations with optical depth 7 = 1.2 and
coefficient of restitution € = 0.5.
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Figure 2: Stroboscopic space-time diagram of a self-
gravitating system (same setup as Fig.1 and r;, =0.57).
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Figure 3: Evolution of the amplitude spectrum corre-
sponding to Fig.1.
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Figure 4: Evolution of the amplitude spectrum corre-
sponding to Fig.2.
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