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Abstract

The first Kuiper-belt contact binary (486958) 2014
MUG69 has been confirmed earlier this year by the
New-Horizons spacecraft mission during the first fly-
by. The two bodies, Ultima and Thule, being almost
fully intact implies that the formation is likely due to
a slow merging impact. We therefore investigate the
outcome of such slow impacts using a SPH code to
perform hydrodynamic simulations. We vary the im-
pact velocity, the strength of the two bodies, as well as
the impact angle to cover the most probable scenarios.
Our goal is to get a reasonable parameter space for the
formation of such a binary which does not deform, has
the correct rotation speed of Ultima-Thule and to fur-
thermore show that occasional high impact velocities
result in disruptional collisions.

1. Introduction

The New-horizons spacecraft took high resolution im-
ages of the cold classical belt object (486958) 2014
MUG69 (Ultima-Thule), which confirmed that the ob-
ject is indeed a contact binary of two similar sized
ellipsoids with radii 9.75 and 7.1 km [7]. The ro-
tational period of Ultima-Thule is around 15 hours,
which is consistent with classical belt objects but far
from the critical breakup velocity, thus making rota-
tional breakup formation implausible.

2. Impact model

We use a SPH code developed by [8] to perform hydro-
dynamical collision simulations. The miluphCUDA
code is implemented via CUDA and runs on graph-
ics processing units (GPU). The code has already been
successfully applied to several studies involving im-
pact processes [2, 6, 9].

The code can treat self-gravity, as well as gas, fluid,
elastic, and plastic solid bodies with material strength,
including a porosity model which can be applied for

small- as well as large-body collisions.

The porosity is implemented using the so called
P—a model [3].The dependence is expressed in terms
of the porous material pressure P, such that:
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where P is the pressure, ps the density and E the
energy of the solid matrix material and o = p;/p is
the distention. For the solid matrix material we use the
Tillotson equation of state (EOS), with the parameters
for Pumice [5]. The matrix density is chosen tobe 2 g
cm~3 Assuming a bulk density for Ultima-Thule of 1
g cm™3 implies an initial porosity of 50%.

The simulations with different strengths are done
using four different sets of crush curve parameters (the
same approach was used by [4]).

We use a simple quadratic crush curve [3] in order
to define a = a(P):
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where oy = 2 is the initial distention, P, is the tran-
sition pressure between the elastic and plastic regime
and P; denotes pressure at which the material is fully
compacted. The four sets of crush curve parame-
ters are listed in Table 1. Our lowest-strength crush
curve values correspond to the intermediate-strength
values from [4] since we assume 67P/Churyumov-
Gerasimenko to be more fluffy and porous. Our
highest-strength values equal those of [5].

We use a simple von Mises plasticity model with
a constant yield strength. Fracture and brittle failure
are treated using the Grady—Kipp fragmentation
prescription [1]. For additional details regarding the
miluphCUDA implementation of the porosity and
fracture model refer to [10] and [2].

In order to see if the contact binary can be repro-
duced with typical impact velocities equal to ves. we



Table 1: Crush curve parameters.

Type P, P Qg
Lowest-strength 103 10° 2
Low-strength 10* 108 2
Intermediate-strength ~ 10° 107 2
High-strength 106 2.13x 108 2

examine following aspects:
Shape: can Ultima and Thule merge softly, almost
without deforming, for different crush curve param-
eters with v, = vVese?
Rotation rate: which impact angles result in the
present day rotation rate of Ultima-Thule?
Disruption: can it be explicitly shown that random,
high velocity impacts (e.g. Vimp = 10 X vesc) do not
reproduce the observed properties of Ultima-Thule?
We therefore perform a number of impact simulations
with impact angles between 5-50°, with 5° increments,
a fixed impact velocity v.s. and four sets of crush
curve parameters from Table 1.

Figure 1 shows a merging impact with almost no
deformation of the binary. For high impact velocities
around Vjy,, = Vesc We get disruptional collisions.
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Figure 1: Merging impact with v;;,, = .. Colour
plotted is the damage.

3. Summary and Conclusions

We use hydrodynamical simulations to show that
Ultima-Thule can be formed for a plausible range of
initial parameters of the collision. Since the impact
velocity is relatively low, the shape is undeformed for
most of the runs. The rotational period is compati-
ble with the observations if the impact angle is ~ 40

deg, or if the closest approach distance is q/Riot ~
0.6 —0.7.
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