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Abstract

We discuss the possible breakup of a prolate asteroid
during a close flyby. New constraints for the tidal
disruption for solid biaxial ellipsoids are derived,
taking the size, shape, density, material strength,
compressibility, rotation, and orientation of the flyby
object into account using an exact analytical solution.
Results set a lower limit for the critical distance for a
break-up to occur, relative to the rubble-pile models,
in relation to reasonable values of tensile strength
and a Poisson ratio. Exact expressions for the stress
tensor components under self-gravity, rotation and
tidal forces are derived using methods from elasticity
theory. Asteroid 433 Eros at flyby near Earth is
presented as a case study.

1. Introduction

One of the most important questions is at what
distance from a large planet a small body may split,
and how this distance depends on the physical
properties and figure of the body. This has been
under debate ever since Edouard Roche (1864), in the
middle nineteenth century, drew attention to the
problem by calculating his famous expression for the
splitting distance, D, as

D =2.45 (py/po)' "Ry or 5 = D/R, (po/py)'* = 2.45, (1)
where R, and p, are the radius and density of the
planet, and py is the density of the small body. Roche
used a homogeneous, self-gravitating liquid satellite
on a circular orbit around a solid planet, rotating in a
bound, direct fashion along an axis perpendicular to
the orbital plane. He only took the effects of self-
gravity and tidal forces into account; the resulting
critical breakup distance showed no reference to any
other property of the body than its density. Later,
ellipsoidal figures of solid bodies under tidal and
self-gravity forces were studied [1-3]. But, a number

of constraints, like incompressible body etc., not
allowed getting a general solution.

2. Analytical procedure

The well-understood theory of gravitational and tidal
potential can be used to calculate elastic
deformations and stresses of small bodies. The force
field strength for a solid body F is determined by the
gradient of the total potential

F = pograd[V(n)], V(r) = V(r) + Vo(r) + V() (2)

where pois the mean density, V, is the gravitational
potential, V,, is the centrifugal potential, and V, is the
tidal potential. If the small body has an axis of
symmetry, the problem simplifies to an exact
analytical solution. In general, the Cartesian
decomposition is appropriate, as in
u=exu,teyu,+e,u

Then, the equilibrium equation of an isotropic body
in the total (gravitational, tidal and centrifugal) force
field takes the form

p Au + (A +p) grad (div u) = —F, 3)
where p, A are the Lamé constants and
pw=E/2(1+v); A= vE/(1+v)(1-2v), “)

where v is the Poisson ratio, and E is the Young
modulus of solid bodies. If the surface is free of load;
as it is usually the case for small bodies and asteroids,
then f;=0 on the surface as boundary conditions.

The total stress in the body is determined by the
composition of tensile (centrifugal and tidal) and
compressive (gravity) forces. Their values depend in
turn on the intensity ratios of the respective potentials

I, = 0/T*Gpy, ® = 2/T;

I, = MD*/27p, =2/3 1/5°, (3)
where G is the gravitational constant , T is the period
of rotation, M is the mass of the planet, D is the
distance between the centers of the planet and the
small body. Unfortunately, the elegant method of



decomposition on spherical harmonics, is not
applicable for asteroids at considerable non-
sphericity of a figure. An elongated small body is
better represented by a biaxial ellipsoid with the main
semiaxes a and c, a > ¢, with the eccentricity

€=+(a2-c2)/a
For example, the figure of Eros is well approximated

by an elongated biaxial ellipsoid with € = 0.946.

The tidal potential, V(x,y,z), in a general flyby-
scenario is described by the following expression
V(r) = - G*M/D’ [r — 3*R*(R*r)/R*],

where r is (X,y,z) in the local coordinate system
associated with the principal axes of the body, and R
is (D,0,0) in the corresponding spherical coordinate
system, pointing toward the flyover planet. In special
cases, 0 =m/2 and ¢ = 0 or ¢ = /2, and the tidal
potential could be represented by simple quadratic
forms:

Vi(x,y,z) = G*M/D* (x* — y*/2 — 2%/2),

¢ =0, “down” case; (6)
Vi(x,y,z) = G*M/D* (" — x%/2 — 2*/2),

¢ =m/2, “flat” case.

In these special scenarios, the long axis points to the
flyover planet (“down” case) or is perpendicular to it
(“flat” case).

3. Results

The final solution for the diagonal components of the
stress tensor is convenient to present in a normalized
form

611(%.¥,2) = 60 [S 11 (v,e, L. L) (x/a) - 1) +

SP eIl (v/e) + SPhi(veLuL) (z/c)] ete.

where 6,= 41G(poa)’. This representation explicitly
expresses the boundary condition of the free surface
and allows us to estimate the spatial distribution of
stresses in the asteroids body for different cases of its
orientation. Everywhere further we will use the
asteroid Eros as an example.

Thus, for Eros, the tensile (positive) stress arises
from a certain distance along the axis directed at the
planet: for the orientation "down" is the axis OX (see
Fig. 1a), for the orientation "flat" is the OY axis (see
Fig. 1b). And for the last case, this distance is
significantly less. With moderate rotation, along
other axes of the body stress is compressive, only.
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Figure 1: Stress components (at 6y) (a) along OX
case «downy; (b) along OY case “flat”, d=D/Rg

4. Summary and Conclusions

Thus, only for the orientation "down" the possibility
of complete decay of a prolate small body under tidal
forces when approaching the planet is realized. A
necessary condition for this is the presence of tensile
stresses on some cross-section. Previous analysis
showed that for the lower estimate of the critical
distance Dc to the planet it is best to use the value
ol1 in the center of the body ( cross-section x=0) as
6“1 (D, T,v,€)=0.

So, 6.= &(v,e) will depends on v and ¢ of the body.
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