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Abstract 
We discuss the possible breakup of a prolate asteroid 
during a close flyby. New constraints for the tidal 
disruption for solid biaxial ellipsoids are derived, 
taking the size, shape, density, material strength, 
compressibility, rotation, and orientation of the flyby 
object into account using an exact analytical solution. 
Results set a lower limit for the critical distance for a 
break-up to occur, relative to the rubble-pile models, 
in relation to reasonable values of tensile strength 
and a Poisson ratio. Exact expressions for the stress 
tensor components under self-gravity, rotation and 
tidal forces are derived using methods from elasticity 
theory. Asteroid 433 Eros at flyby near Earth  is 
presented as a case study.   
 

1. Introduction 
One of the most important questions is at what 
distance from a large planet a small body may split, 
and how this distance depends on the physical 
properties and figure of the body. This has been 
under debate ever since Edouard Roche (1864), in the 
middle nineteenth century, drew attention to the 
problem by calculating his famous expression for the 
splitting distance, D, as 
D = 2.45 (ρp/ρ0)1/3Rp or δ = D/Rp (ρ0/ρp)1/3

 =  2.45,   (1) 
where Rp  and ρp are the radius and density of the 
planet, and ρ0 is the density of the small body. Roche 
used a homogeneous, self-gravitating liquid satellite 
on a circular orbit around a solid planet, rotating in a 
bound, direct fashion along an axis perpendicular to 
the orbital plane. He only took the effects of self-
gravity and tidal forces into account; the resulting 
critical breakup distance showed no reference to any 
other property of the body than its density. Later, 
ellipsoidal figures of solid bodies under tidal and 
self-gravity forces were studied [1-3]. But, a number 

of constraints, like incompressible body etc., not 
allowed getting a general solution. 

2. Analytical procedure 
The well-understood theory of gravitational and tidal 
potential can be used to calculate elastic 
deformations and stresses of small bodies. The force 
field strength for a solid body F is determined by the 
gradient of the total potential 
 F = ρ0 grad[V(r)], V(r) = Vg(r) + Vω(r) + Vt(r)   (2) 

where ρ0 is the mean density, Vg is the gravitational 
potential, Vω is the centrifugal potential, and Vt  is the 
tidal potential. If the small body has an axis of 
symmetry, the problem simplifies to an exact 
analytical solution. In general, the Cartesian 
decomposition is appropriate, as in 
  u = ex ux + ey uy + ez uz  

Then, the equilibrium equation of an isotropic body 
in the total (gravitational, tidal and centrifugal) force 
field takes the form 
       μ Δu + (λ + μ) grad (div u) = –F,                  (3) 
where μ, λ are the Lamé constants and  
        μ = E/2(1+ν); λ = νE/(1+ν)(1-2ν),                  (4) 
where ν is the Poisson ratio, and Е is the Young 
modulus of solid bodies. If the surface is free of load; 
as it is usually the case for small bodies and asteroids, 
then  fi = 0 on the surface as boundary conditions. 
 
The total stress in the body is determined by the 
composition of tensile (centrifugal and tidal) and 
compressive (gravity) forces. Their values depend in 
turn on the intensity ratios of the respective potentials 
 Iω = π/T2Gρ0, ω = 2π/T;  
 It = MD3/2πρ0  = 2/3 1/δ3,            (5) 
where G is the gravitational constant , T is the period 
of rotation, M is the mass of the planet, D is the 
distance between the centers of the planet and the 
small body. Unfortunately, the elegant method of 
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decomposition on spherical harmonics, is not 
applicable for asteroids at considerable non-
sphericity of a figure. An elongated small body is 
better represented by a biaxial ellipsoid with the main 
semiaxes a and c, a > c, with the eccentricity             
ε = √(a2 – c2)/a   
For example, the figure of Eros is well approximated 
by an elongated biaxial ellipsoid with ε ≈ 0.946.  
The tidal potential, Vt(x,y,z), in a general flyby-
scenario  is described by the following expression  
Vt(r) = - G*M/D3 [r – 3*R*(R*r)/R2],   
where r is (x,y,z) in the local coordinate system 
associated with the principal axes of the body, and R 
is (D,θ,φ) in the corresponding spherical coordinate 
system, pointing toward the flyover planet. In special 
cases, θ = π/2 and φ = 0 or φ = π/2, and the tidal 
potential could be represented by simple quadratic 
forms:   
Vt(x,y,z) = G*M/D3

 (x2 – y2/2 – z2/2),   
φ = 0, “down” case;          (6)  
Vt(x,y,z) = G*M/D3

 (y2 – x2/2 – z2/2), 
 φ = π/2, “flat” case. 
In these special scenarios, the long axis points to the 
flyover planet (“down” case) or is perpendicular to it 
(“flat” case). 
 
3. Results 
The final solution for the diagonal components of the 
stress tensor is convenient to present in a normalized 
form 
σ11(x,y,z) = σ0 [S(1)

11(ν,ε,Iω,It) ((x/a)2 - 1) + 
S(2)

11(ν,ε,Iω,It) (y/c)2 + S(3)
11(ν,ε,Iω,It) (z/c)2]  etc. 

 
where σ0 = 4πG(ρ0a)2. This representation explicitly 
expresses the boundary condition of the free surface 
and allows us to estimate the spatial distribution of 
stresses in the asteroids body for different cases of its 
orientation. Everywhere further we will use the 
asteroid Eros as an example.   
Thus, for Eros, the tensile (positive) stress arises 
from a certain distance along the axis directed at the 
planet: for the orientation "down" is the axis OX (see 
Fig. 1a), for the orientation "flat" is the OY axis (see 
Fig. 1b). And for the last case, this distance is 
significantly less. With moderate rotation, along 
other axes of the body stress is compressive, only. 
 

 

Figure 1: Stress components (at σ0) (a) along ОХ 
case «down»; (b) along OY case “flat”, d=D/RE 

4. Summary and Conclusions 
Thus, only for the orientation "down" the possibility 
of complete decay of a prolate small body under tidal 
forces when approaching the planet is realized. A 
necessary condition for this is the presence of tensile 
stresses on some cross-section. Previous analysis 
showed that for the lower estimate of the critical 
distance Dc to the planet it is best to use the value 
σ11 in the center of the body ( cross-section x=0) as 
σ(c)

 11 (D, T, ν, ε) = 0.  
So, δс = δ(ν,ε) will depends on ν and ε of the body.   
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