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Abstract

Giant impacts result almost half the time in hit-and-run
collisions (HRCs), where most of the impactor contin-
ues downrange in a deflected orbit. Here we present an
update of our data-driven methodology [1] that can be
applied to N-body simulations to predict the resulting
mass and orbit of the two main remnants from a HRC.

1. Introduction

Grazing collisions usually do not always lead to the
accretion of the projectile; they act as strong close en-
counters with specific properties: 1) some mass ex-
change occurs, and 2) the relative velocity of the two
bodies in decreased [2]. This kind of collision hence
results in two main remnants, along with a relative
small mass of escaping debris. N-body models of ter-
restrial planet formation thus need to properly handle
this kind of collision. This ensures a realistic account-
ing of the number of collisions each body suffered, the
time scale needed for the formation of the system [3],
the efficiency of material mixing between bodies com-
ing from different regions of the system, and the deliv-
ery of volatiles [4].

2. Methodology

We use machine learning to streamline a set of about
800 Smoothed Particle Hydrodynamics (SPH) simu-
lations of giant impacts into fast predictors that can
quickly model collisions on-the-fly during N-body
studies. Our simulation span a range of target mass
(Mr) between 1072 and 1 Mg, projectile mass fraction
Y= Mp /My between 0.2 and 0.7, scaled impact veloc-
ity Veoll/Vese between 1 and 4 and the whole range of
impact angles 6.o1. We refer to [1] for more details on
the methodology.
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Figure 1: Bulk density as function of the mass.

First, we derive a mass-radius relationship from the
initial body profiles which is used for both the anal-
ysis and detection criterion during the N-body mod-
elling. The extracted bulk density as function of mass
is provided in Figure 1. This ensures that the colli-
sion properties derived from the N-body simulations
are consistent with the underlying SPH simulations.

We then train, validate and test a multi-class Sup-
port Vector Machine (SVM) able to discriminate be-
tween different types of collisions: accretion (single
significant remnant whose mass is greater than the tar-
get), erosion (single remnant but whose mass is less
than the target), and Hit-and-run collisions (HRC, two
large remnants). Accretionary and erosive scenarios
are cases in which we cannot fit a relative orbit of the
second largest remnant, which is instead fit for Hit-
and-run surviving projectiles.

Finally, we train, validate and test an ensemble of
Neural Networks (NNs) able to predict the following
quantities: 1) mass of the largest remnant, given as
&L = (ML — M) /Mp, 2) mass of the second remnant,
given as & = Ms/Mp — 1; 3) relative orbit of an un-
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Figure 2: Mass of the largest (leff) and second (right) remnants given in terms of the accretion efficiency (see text)
as function of the impact angle and velocity, for a target mass Mt = 0.1 Mg and ¥ = Mp/My = 0.7. The black
region shows the regime where a single significant remnant is found.

bounded surviving hit-and-run projectile through three
parameters: 3a) the scaled orbital energy (which re-
lates to the semi-major axis); 3b) the impact parameter
(which relates to the eccentricity); and 3c) the shift of
the longitude of the pericentre. The last three param-
eters allow to properly determine the relative orbit of
the two HRCs remnants, including the velocity change
and the angle of deflection.

3 Results

The performance of the machine learning tools are
evaluated in terms in how well their predictions cor-
relate with the correspondent values of the “parent”
SPH simulations. The classifier of types of collision
reaches an accuracy above 95% at testing. The neural
networks have mean square error lower than 4 x 1072
and regression index above 99% at testing.

Figure 2 shows two maps of mass of the largest and
second largest remnants as predicted by the neural net-
work and classifier. Among the four impact properties
(My, v = Mp/Mr, 011, Veoll / Vesc), We keep the target
and projectile masses as constants and vary the other
parameters. While a largest remnant can be always
identified (Figure 2, left panel), the second remnant
mass is only defined when both the classifier identi-
fies an HRC and the orbital energy € is positive (as
consistency check). The map of the mass the largest
remnant is quite similar to our previous result in [1].
For the mass of the second remnant, it remains similar
to the mass of the projectile, except in regions close to
the transition with the erosion regime (steep angle and

high velocity).

4. Future work

The developed machine learning tools allow to ac-
curately and quickly simulate giant impact collisions
during N-body evolution of planetary system. The pre-
dictors mimics their “parent” SPH simulations, but run
in a fraction of a second, thus enabling on-the-fly mod-
elling. The tools will be soon released in form of a
code library that can be easily integrated in N-body
codes such as REBOUND or mercury.

We plan to extend the set of underlying simulations
to improve both the classifier and NN in the region of
high uncertainty and provide a better prescription for
the transition between the Graze-and-merge collision
(GMC) regime and HRC.
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