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Abstract

Studies have shown that water-world planets are com-
mon in our galaxy. Models have assumed separate lay-
ers for ice and rock for the internal structure of these
planets because of the large differences in chemistry
and density of rock and ice. Our new experiments
found a dramatic increase in the solubility of HO in
dense silica polymorphs at pressures above ~20 GPa,
reaching a SiO2:H>O molar ratio of 3:1. Such large
solubility of H2O in silica can alter the mass-radius
relations. The large solubility should be also consid-
ered in modeling the dynamo, the geochemical cycle,
and the dynamics of water-world planets.

1. Introduction

Recent mineral physics studies have shown that some
high-pressure (P) silicate phases can contain a large
amount of HyO in their crystal structures [1, 2]. It
is of interest if pressure can enhance the solubility of
H5O0 in silicates under H,O saturated conditions of
water-world planet’s deep interior. Because the Si-O
bonding builds silicates and H2O is the dominant form
of planetary ice, chemical reactions between SiO5 and
H,O at high pressure-temperature (P—T) provide im-
portant insights for such a fundamental question. It
is also striking that many of the recently discovered
dense hydrous phases (phase H, ¢-FeOOH, and 0-
AIOOH) [1, 3, 4] have the CaCls-type structure which
is also stable in SiO, at pressures above 80 GPa and
high temperature [5].

2. Experimental Methods

We conducted laser-heated diamond-anvil cell experi-
ments to understand chemical reaction between SiOq
and H5O at 7-110 GPa and 700-2000 K. We measured
X-ray diffraction patterns during high-pressure exper-

iments at the GSECARS sector of Advanced Photon
Source. We recovered the samples after the experi-
ments and measured infrared spectra for the quenched
samples. We also conducted density functional theory
calculations (DFT) to understand the effects of HoO
incorporation on the crystal structure of CaCly-type
SiOa.

3. Results

Silica is known to undergo a phase transition from
rutile-type (i.e., stishovite) to CaCly-type structure at
80GPa and high temperatures [5]. However, with
a presence of HyO, we found that the transition oc-
curs at much lower pressure, ~20 GPa. A line of evi-
dence supports HoO incorporation in crystal structure
of CaCly-type SiO2 at high pressure: (1) Degree of
orthorhombic distortion was much higher than what
was found in dry system. (2) The recovered samples
showed anomalously expanded volumes (up to 4%) at
1 bar. Our DFT calculations indicated that such large
volume expansion is consistent with n up to 0.25 for
(1 —n)SiO2-nH50. (3) The infrared spectra of the re-
covered samples found strong OH vibrational modes.
At pressures above 60 GPa, HoO changes the struc-
tural behavior of silica, stabilizing a NiAs-type struc-
ture. Our data suggest that the NiAs-type phase can
store a similar amount of HyO as the CaClsy-type
phase. The NiAs-type hydrous silica is much more
compressible than anhydrous dense silica polymorphs.

4. Implications

If H,O is more soluble in silica in the interiors
of water-world planets, as supported by our high-
pressure experiments, this type of planets could have
a single high metallicity layer where H2O ice at shal-
lower depths undergoes a gradual change to hydrous
silica at greater depths, instead of separate layers of



ice and rock (Fig. 1). However, silicates in the deep
interiors of water-world planets likely contain other
elements, most notably Mg and Fe. Therefore, fu-
ture studies should further investigate the effects of
these elements under HoO saturated conditions. On
the other hand, some exoplanet hosting stars have suf-
ficiently low Mg/Si ratios and therefore water-world
planets around those stars would have rocks with suf-
ficient SiO4 to form free silica phases [6]. In this case,
our results can be directly applicable.

Another important factor to consider is temperature.
Because the degree of hydration can increase at lower
temperatures [7], the HoO solubility in silica should
be more significant in the interiors of cooler water-
world planets [8]. For Uranus and Neptune in our so-
lar system, studies have estimated temperatures higher
than 2000 K for the high metallicity layer [9], which is
higher than temperature of our experiments and there-
fore the solubility could be less severe. However, if
internal temperature is sufficiently high, because SiO»
and HO can form a single fluid even at very low pres-
sures [10], the mutual solubility could be much more
extensive.

Because H2O incorporation increases the compress-
ibility of silica, the solubility of H2O in silica could
alter the mass-radius relations of water-world planets.
Our initial result suggests that the conventional rela-
tion based on separate ice and rock layers could under-
estimate the amount of HyO, although the uncertain-
ties in the current astrophysical data need to improve
to convincingly resolving such an effect. It has been
believed that the phase changes in HoO play an im-
portant role for the observed magnetic field of Uranus
and Neptune [11]. If a significant amount of silicate is
dissolved in the H»O layer, the properties of ice layer
can be altered. If the solubility of HyO in SiOy grad-
ually increases with pressure, materials transported by
convection would undergo mixing and de-mixing at
different depths in water-world planets, affecting the
geochemical cycle.
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Figure 1: The internal structure of the water-world
planets. (Left) Conventional view. (Right) Proposed
structure based on inter-solubility of rock and ice.
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