
Stability around an equilibrium point of the comet
9P/Tempel 1

Gabriel Borderes-Motta (1), Tamires Moura (2)and Othon Cabo Winter(2)
(1) Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
(gabriel.borderes@uc3m.es)
(2) Grupo de Dinâmica Orbital e Planetologia, São Paulo State University, São Paulo, Brazil

1. Introduction
Nowadays, a large part of the missions in activity are
directed to small bodies, i. e., missions whose tar-
gets are comets and asteroids. The mission OSIRES-
Rex from NASA [5] and the mission Hayabusa-2 from
JAXA [4] are eminent examples, they are investigating
the asteroids (101955) Bennu and 162173 Ryugu, re-
spectively.

As well as the number of missions, the works about
the dynamics around small bodies grew up in last
decades. The studies about this dynamics are useful
to plan missions to irregular bodies and also identify
features like rings, moons or debris.

In view of this we studied the dynamics around
an equilibrium point of the comet 9P/Tempel 1 using
the technique of Poincaré surface of section. A lin-
early stable equilibrium point is a dynamic character-
istic which can indicate stable configurations of orbits
around the body, mainly orbits that are synchronous
with the spin movement of the body.

In next section we will provide some information on
the tools used in this study, in the third section we will
introduce some of the results, and in the forth section
are some comments about implications of the results.

2. Model
The model used here is based in [1] were the dynam-
ics around the asteroid 4179 Toutatis was mapped by
Poincaré surface of section.

We use the polyhedron shape model of the comet
9P/Tempel 1 [3] to create a mascon model with 47722
point of mass whose sum of the masses is 7.2 × 1013

kg, i. e., the total mass of the comet. This model al-
lows us to simulate the gravitational potential of this
irregularly shaped body, and obtain accurate orbits in
an efficient way.

The movement equations for this system are given
by:
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where x, y and z are the coordinates of the system,
ω is the spin velocity of the comet, G is the universal
gravitational constant, mi is the mass of each point of
the mascons grid, N is the total number of points from
the mascons grid, and ri is the relative position of each
mascon to the position of the orbiting particle.

We use the Burlish-Stoer integrator[2] to integrate
the trajectories of particle under the same Jacobi con-
stant. Then, we define a section that holds a linearly
stable equilibrium point of the comet. Every instant of
time when the trajectory crosses the section defined,
we save the data of position and velocity in the x axis.
The plot of this saved data gives us the Poincaré sur-
face of section.

Note this construction of Poincaré surface of section
is usually used to bi-dimensional problems. Even so, it
is possible to take information by this tool with assis-
tance of analysis of the third dimension, as it is shown
in [1].

3. Results
Using the zero-velocity curves we identify 4 equilib-
rium points, where two points were identified as lin-
early stable equilibrium points. We chose the stable
equilibrium point at the position x = −1.93331 km
and y = 13.5931 km and we defined the cross section
holding this point.

The Poincaré surface of section for the Jacobi con-
stant 1.04× 10−6 and the behavior in the third dimen-
sion are presented in the Fig. 1. The closed curves are
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quasi-periodic orbits, a center common to a number
of closed curves indicates a periodic orbit of first(low
eccentricity) or second(resonant) kind. In Fig. 1 the
closed curves are doubled. Each initial condition cre-
ates a pair of closed curves, one to the left and one to
the right of the equilibrium point (at x ∼ 13.5). It
means that the movement of these quasi-periodic or-
bits and the periodic orbit is around the equilibrium
point. The largest quasi-periodic orbit and the peri-
odic orbit are in orange and purple, respectively, and
its trajectories are shown in the same colors in Fig. 2,
where it is possible to confirm they are orbiting the
equilibrium point in the rotating frame.

Figure 1: The Poincaré surface of section for the comet
9P/Tempel 1 with Jacobi constant 1.04 × 10−6.Three conditions
are marked in different colors blue, orange, and purple. The initial
conditions have ẏ > 0 and 3.0 < x < 13.5 km. The black dot is
the linearly stable equilibrium point.

On the other hand, the randomly scattered dots can
indicate chaotic trajectories, but due to the third di-
mension some trajectories creates scattered dots de-
spite being periodic or quasi-periodic orbits. In order
to discern if scattered dots indicate periodic or chaotic
trajectory we can use the variation in the third dimen-
sion, i. e., if the variation in the third dimension is very
lower than the variation of the other initial conditions
that also generated scattered dots. To illustrate this,
we selected an initial condition that generates scattered
dots in blue and presents a low variation in the third
dimension (view Fig. 1). The trajectory of this initial
condition, showed also in blue in Fig. 2, is typically of
a quasi-periodic orbit in resonance.

4. Final Comments
The results in the present works show the existence of
stable regions in the vicinity of the equilibrium point.
We intent to add the radiation solar pressure and ex-

Figure 2: The orbits of the three selected initial conditions. In
gray is the comet 9P/Tempel 1, in blue the orbit associated to a res-
onance, in orange a quasi periodic orbit, and in purple to a periodic
orbit. The black dot is the linearly stable equilibrium point.

pand the study. The future goal is to check if the dy-
namics allows the comet hold particles during its inac-
tivity period.
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