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Abstract

The Moon is thought to have formed after a planetary
embryo, known as Theia, collided with the proto-
Earth over 4.5 billion years ago. For the first time, we
use H isotopes to help constrain the composition of
Theia. We suggest the Moon incorporated very low-
D/H (8D =~ -750%o) hydrogen derived from solar
nebula H; ingassed into the magma ocean of a large
(~0.4 M), enstatite chondrite-like planetary embryo
that was largely devoid of chondritic water. These
new constraints have profound implications for the
Moon-forming impact and the evolution of the Earth-

Moon system.

1. Introduction

Apatite [Cas(PO4);(OH,F,Cl) is the only water-
bearing mineral found in lunar samples. Hydrogen
isotopic measurements of apatites in lunar rocks
show that there seem to be multiple H reservoirs with
diverse D/H ratios within the lunar interior, e.g. [1].
Intriguingly, apatite in the KREEP-rich Apollo 15
quartz monzodiorites (QMDs) has low water content
(40-300 ppm) and 8D as low as -750%. (Figure 1)
[2], which is almost as low in D as protosolar H or
solar wind. However, their unique formation
environment deep in the lunar crust makes it unlikely
they incorporated solar wind, and instead they seem
to sample H indigenous to the lunar interior [1]. We
propose a new hypothesis for Theia’s composition to

explain this ultralow D reservoir (Figure 2).

2. Ingassed Solar Nebula Hydrogen

Recent work by Wu et al. [3] proposes that Earth
contains solar nebula hydrogen and *He and **Ne,
ingassed into the magma ocean of its largest embryo
due to a ~1 bar H, atmosphere in contact with solar
nebula gas. This requires a large embryo, > 0.3 — 0.4
ME [7], during the first few Myr of the solar nebula.
Wau et al. [3] argued that ~0.14 oceans (1 ocean = 1.5

x 10*' kg) solar nebula hydrogen with D/H=21 x 10,
combined with ~8 oceans of chondritic water with
D/H=140 x 107, leading to some materials with
D/H=120 x 10" (8D=-230%,) that should reside at the
Earth’s core-mantle boundary. The discovery of
samples with 8D~-218%o in terrestrial lavas sampling
deep-mantle plumes [8] may support this hypothesis.
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Figure 1: D/H ratios in lunar samples (data from[1] and
references therein). The Apollo 15 QMDs are outlined in
blue and extend to very low D/H (8D=-750%o).

The Moon formed too late to ingas nebular H directly,
but could not have inherited its lowest D material
from Earth [3]. This leaves ingassing into the magma
ocean of Theia (the impactor) as the only plausible
source of D-depleted nebular hydrogen. Ingassing
into Theia’s mantle could yield materials with 6D~-
750%o, but requires it to be large enough to attract a
significant atmosphere (> 0.3-0.4 Mg) [7] and accrete
little (<200 ppm) chondritic water, as to not dilute the
nebular signature. Such a massive Theia is consistent
with the merger model [4], or possibly the hit-and-
run model [5]. Enstatite chondrites (ECs) are
extremely dry with oxygen fugacity 5 log units below
the iron-wiistite buffer (IW-5) are consistent with this
dry composition [3, references therein]. We model
proto-Earth’s mantle with ~1800 ppm H,O and bulk
0D~+25%,, before core formation, and Theia’s



mantle with ~180 ppm H,O and bulk 8D~ -610%o,
before core formation, and ~100 ppm H,O after core
formation (Figure 2)

1. Initial Conditions

Theia Proto-Earth
0.4 M 0.62 M,
Mg/Si=0.89 Mg/si=1.20
52051 =-0.57 8751 =-0.30
6D = -130%, 5= +25%
AwW=5 Aw=-2

2. Planet Evolution: Nebular ingassing lowers D/H. i into cores raises mantle §%Si and FeO

Theia Nebug Proto-Earth

Nebula; Mantle mass 0.27 M i Mantle mass 0.42 M

H, Mg/Si=1.00 Mg/si=1.26
595i=.0.29 5i=027
WMantle Fe0 = 15 wt.% Mantle FeO = 5 wt.%
Mantle H,0 = 220 ppm Total H,0 = 1800 ppm
Mantle 60 = -740% to -130% Mantle 6D = -220% to +25%

Core = 5.2wt% Si Core=1.4wWt% Si

3. Giant Impact

Merger (Canup, 2012):
cores merge, mantles mix
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4. Final Conditions

Hit and Run (Reufer et al,, 2012)
Cores merge, mantles mix, some of Thea lost

Earth Moon
1,00 M 0012 M,
Mantle mass 0.011 M

Mantle mass 0.68 M

Mg/si=12 Mg/si=1.1

8951 =-0.27 8%5i=-028

Mantle FeO = 7.7 wt.% Bulk mantle H,0 = 850 ppm

Bulk mantle H,0 = 1200 ppm Bulk mantle 5D = -70%
Bulk mantle 8D = -20%o Mantle FeO = 10.6 wt.%
Core=3.1wt.%Si Core =5.2 wt.%?

Figure 2: Our hypothesized sequence of events leading to
the Moon’s formation, starting with a massive and
chemically reduced Theia colliding into a proto-Earth that
already had accreted carbonaceous chondrite material.

3. An Enstatite Chondrite Theia

The similarity in multiple stable isotopes (848Ca,
e¥Ni, ¢”Mo, A0, £°Ti, &**Cr, ¢°Zr, ¢'%W; [3,
references therein]) between the Earth and Moon is a
long-standing mystery. If Theia is made of EC
material, and the mixing parameter |fpp/fpg - 1] < 40%
(fpm=fraction of Moon that is proto-Earth, fpp=
fraction of Earth that is proto-Earth), work by [6]
demonstrates that all these similarities are explained.

As pointed out by Meier et al. [6], ECs are FeO-poor,
and yet the Earth’s mantle has 7.8wt.% FeO and the
Moon’s mantle is 10.6wt.% FeO [9]. It is likely that
the Moon incorporated proportionally more material
from Theia than Earth, implying Theia was FeO-rich.
We show [2] that sequestration of 12% of Theia’s Si
in its core (consistent with equilibration at <20 GPa,
1800 K and IW-5) would lead to its mantle being 15
wt.% FeO, and would increase &°Si by 0.27%.
Equilibration in proto-Earth (~25 GPa, 2800 K, IW-2)
would sequester only 3% of its Si, leading to its

mantle being <5 wt.% FeO, and increasing 8°°Si by
0.03%0. For reasonable starting compositions, both
proto-Earth and Theia (and therefore Earth and Moon)
have 8°°Si~-0.28% after core formation. In a
collision with pr:36%, pr:60%, ‘pr/pr -1|:40%,
consistent with either “merger” [4] or possibly “hit-
and-run”[5], Earth and Moon’s mantles achieve their
observed FeO, and Earth’s core (the two merged
cores) is 3.1wt.% Si.

4. Conclusions

A massive, EC-like Theia is consistent with many
stable isotope similarities between the Earth and
Moon [3,6]. For reasonable initial conditions [2], our
model is also consistent with the mantle FeO content
and 5°°Si values for the Earth and Moon, and Earth’s
core Si mass fraction, provided Si is sequestered in
proto-Earth’s and especially Theia’s core, consistent
with Theia’s large and reduced nature. Because Theia
accreted no carbonaceous chondrite material, Theia
likely originated interior to Earth’s orbit
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