

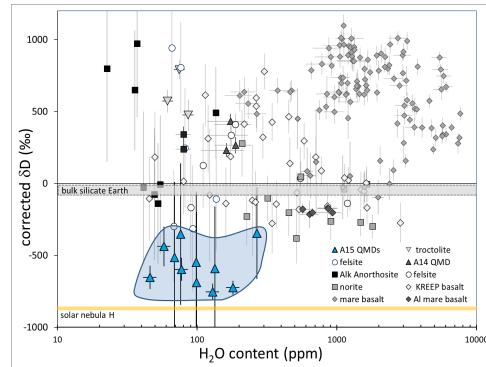
Light Hydrogen in the Lunar Interior: No One Expects the Theia Contribution

Steven J. Desch (1), **Katharine L. Robinson** (2)

(1) School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, (2) Lunar and Planetary Institute, Houston, TX, USA (robinson@lpi.usra.edu)

Abstract

The Moon is thought to have formed after a planetary embryo, known as Theia, collided with the proto-Earth over 4.5 billion years ago. For the first time, we use H isotopes to help constrain the composition of Theia. We suggest the Moon incorporated very low-D/H ($\delta D \approx -750\text{\textperthousand}$) hydrogen derived from solar nebula H₂ ingassed into the magma ocean of a large ($\sim 0.4 M_{\oplus}$), enstatite chondrite-like planetary embryo that was largely devoid of chondritic water. These new constraints have profound implications for the Moon-forming impact and the evolution of the Earth-Moon system.


1. Introduction

Apatite [Ca₅(PO₄)₃(OH,F,Cl)] is the only water-bearing mineral found in lunar samples. Hydrogen isotopic measurements of apatites in lunar rocks show that there seem to be multiple H reservoirs with diverse D/H ratios within the lunar interior, e.g. [1]. Intriguingly, apatite in the KREEP-rich Apollo 15 quartz monzonodiorites (QMDs) has low water content (40–300 ppm) and δD as low as $-750\text{\textperthousand}$ (Figure 1) [2], which is almost as low in D as protosolar H or solar wind. However, their unique formation environment deep in the lunar crust makes it unlikely they incorporated solar wind, and instead they seem to sample H indigenous to the lunar interior [1]. We propose a new hypothesis for Theia's composition to explain this ultralow D reservoir (Figure 2).

2. Ingassed Solar Nebula Hydrogen

Recent work by Wu et al. [3] proposes that Earth contains solar nebula hydrogen and ³He and ²²Ne, ingassed into the magma ocean of its largest embryo due to a ~ 1 bar H₂ atmosphere in contact with solar nebula gas. This requires a large embryo, $> 0.3 - 0.4 M_{\oplus}$ [7], during the first few Myr of the solar nebula. Wu et al. [3] argued that ~ 0.14 oceans (1 ocean = 1.5

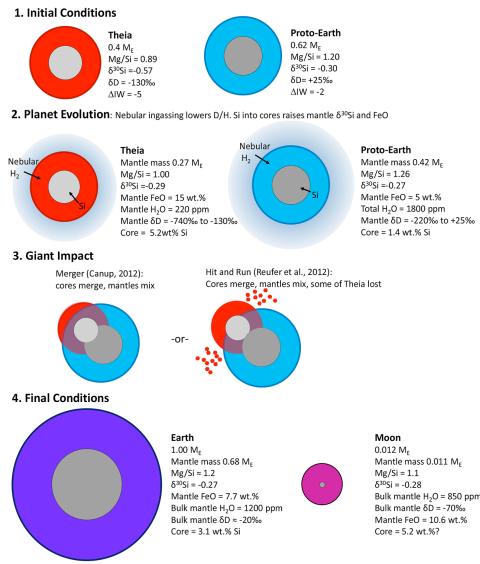

$\times 10^{21}$ kg) solar nebula hydrogen with D/H = 21×10^{-6} , combined with ~ 8 oceans of chondritic water with D/H = 140×10^{-6} , leading to some materials with D/H = 120×10^{-6} ($\delta D \approx -230\text{\textperthousand}$) that should reside at the Earth's core-mantle boundary. The discovery of samples with $\delta D \approx -218\text{\textperthousand}$ in terrestrial lavas sampling deep-mantle plumes [8] may support this hypothesis.

Figure 1: D/H ratios in lunar samples (data from [1] and references therein). The Apollo 15 QMDs are outlined in blue and extend to very low D/H ($\delta D \approx -750\text{\textperthousand}$).

The Moon formed too late to ingass nebular H directly, but could not have inherited its lowest δD material from Earth [3]. This leaves ingassing into the magma ocean of Theia (the impactor) as the only plausible source of D-depleted nebular hydrogen. Ingassing into Theia's mantle could yield materials with $\delta D \approx -750\text{\textperthousand}$, but requires it to be large enough to attract a significant atmosphere ($> 0.3 - 0.4 M_{\oplus}$) [7] and accrete little (< 200 ppm) chondritic water, as to not dilute the nebular signature. Such a massive Theia is consistent with the merger model [4], or possibly the hit-and-run model [5]. Enstatite chondrites (ECs) are extremely dry with oxygen fugacity 5 log units below the iron-wüstite buffer (IW-5) are consistent with this dry composition [3, references therein]. We model proto-Earth's mantle with ~ 1800 ppm H₂O and bulk $\delta D \approx +25\text{\textperthousand}$, before core formation, and Theia's

mantle with ~ 180 ppm H_2O and bulk $\delta\text{D} \approx -610\text{\textperthousand}$, before core formation, and ~ 100 ppm H_2O after core formation (Figure 2)

Figure 2: Our hypothesized sequence of events leading to the Moon's formation, starting with a massive and chemically reduced Theia colliding into a proto-Earth that already had accreted carbonaceous chondrite material.

3. An Enstatite Chondrite Theia

The similarity in multiple stable isotopes ($\epsilon^{48}\text{Ca}$, $\epsilon^{64}\text{Ni}$, $\epsilon^{92}\text{Mo}$, $\Delta^{17}\text{O}$, $\epsilon^{50}\text{Ti}$, $\epsilon^{54}\text{Cr}$, $\epsilon^{96}\text{Zr}$, $\epsilon^{182}\text{W}$; [3, references therein]) between the Earth and Moon is a long-standing mystery. If Theia is made of EC material, and the mixing parameter $|f_{\text{PM}}/f_{\text{PE}} - 1| \leq 40\%$ (f_{PM} =fraction of Moon that is proto-Earth, f_{PE} =fraction of Earth that is proto-Earth), work by [6] demonstrates that all these similarities are explained.

As pointed out by Meier et al. [6], ECs are FeO-poor, and yet the Earth's mantle has 7.8wt.% FeO and the Moon's mantle is 10.6wt.% FeO [9]. It is likely that the Moon incorporated proportionally more material from Theia than Earth, implying Theia was FeO-rich. We show [2] that sequestration of 12% of Theia's Si in its core (consistent with equilibration at <20 GPa, 1800 K and IW-5) would lead to its mantle being 15 wt.% FeO, and would increase $\delta^{30}\text{Si}$ by 0.27‰. Equilibration in proto-Earth (~ 25 GPa, 2800 K, IW-2) would sequester only 3% of its Si, leading to its

mantle being <5 wt.% FeO, and increasing $\delta^{30}\text{Si}$ by 0.03‰. For reasonable starting compositions, both proto-Earth and Theia (and therefore Earth and Moon) have $\delta^{30}\text{Si} \approx -0.28\text{\textperthousand}$ after core formation. In a collision with $f_{\text{PM}}=36\%$, $f_{\text{PE}}=60\%$, $|f_{\text{PM}}/f_{\text{PE}} - 1| = 40\%$, consistent with either “merger” [4] or possibly “hit-and-run”[5], Earth and Moon's mantles achieve their observed FeO, and Earth's core (the two merged cores) is 3.1wt.% Si.

4. Conclusions

A massive, EC-like Theia is consistent with many stable isotope similarities between the Earth and Moon [3,6]. For reasonable initial conditions [2], our model is also consistent with the mantle FeO content and $\delta^{30}\text{Si}$ values for the Earth and Moon, and Earth's core Si mass fraction, provided Si is sequestered in proto-Earth's and especially Theia's core, consistent with Theia's large and reduced nature. Because Theia accreted no carbonaceous chondrite material, Theia likely originated interior to Earth's orbit

References

- [1] Robinson, K.L., et al.: Water in evolved lunar rocks: Evidence for multiple reservoirs. *GCA*188, 244-260, 2016
- [2] Desch S.J. and Robinson K.L.: A unified model for hydrogen in the Earth and Moon, submitted to *Chemie der Erde*, 2019
- [3] Wu, J., et al. Origin of Earth's water: Chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. *JGR Planets* 123, 2691–2712, 2018.
- [4] Canup, R.M. Forming a Moon with an Earth-like composition via a Giant Impact. *Science* 338, 1052–1055, 2012.
- [5] Reufer, A., et al. A hit-and-run Giant Impact scenario. *Icarus* 221, 296–299, 2012
- [6] Meier, M.M.M., et al. On the origin and composition of Theia: Constraints from new models of the Giant Impact. *Icarus* 242, 316–328, 2014.
- [7] Stökl, A., et al. Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. *Astro. Astrophys.*, 576, A87, 2015
- [8] Hallis, L. J., et al. Evidence for primordial water in Earth's deep mantle. *Science* 350, 795–797, 2015.
- [9] Warren, P.H., Dauphas, N., 2014. Revised estimation of the bulk composition of the Moon in light of GRAIL results, and why heat flow should be a top priority for future lunar missions. *LPSC* 45 #2298, Houston, USA.