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1. Introduction. Changes in Martian atmospheric
pressure over time are an important control on Mars’
climate evolution. Most constraints for Martian
atmospheric pressure over time are indirect. A direct
method uses minimum crater size to estimate an upper
limit on atmospheric pressure [1,2]. Thin planetary
atmospheres allow small objects to reach the surface at
high velocities, forming hypervelocity impact craters
[3]. This method is useful for constraining atmospheric
pressure during deposition/alteration of ancient
sedimentary rocks on Mars with evidence for surface
liquid water, as demonstrated by [2] for channel
deposits in  Aeolis Dorsa. However, finding
paleopressure estimates for sites of multiple ages gives
us better temporal coverage of paleopressure evolution.
Here we report paleopressure data for 2 new sites.

2. Integrating New Paleopressure Results. The
Mawrth phyllosilicates are the oldest known hydrously
altered sedimentary rocks in the Solar System (4-3.8
Ga [4]), and suggest surface temperatures >273K [5].
The phyllosilicates overlie an even more ancient (>4
Gyr) paleosurface [4] with a high density of preserved
exhumed ancient craters. This paleosurface may record
a signal of changing impactor population over time.
Our Meridiani Planum site (~3.8 Ga [7]) features
sedimentary units indicative of the presence of surface
liquid water during their deposition (e.g. [8]). We use
HiRISE orthoimages, anaglyphs, and digital terrain
models (DTMs) to identify exhumed ancient craters at
our 2 sites and compare the size-frequency distribution
of measured crater populations to predictions from an
atmosphere- impactor interaction model [9] for
atmospheres of different pressures [2]. Assuming
pressure to be constant over the duration of crater
population accumulation, our new paleopressure limits

are <(1.940.1) bar at/before 4 Ga (Mawrth paleosurf.),
and <(1.5£0.1) bar at ~3.8 Ga (Mawrth Phyllosilicates
and Meridiani) (Fig. 1).
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Fig 1 - Updated paleopressure constraints for Mars.
Numbers correspond to reference list. Superscripts: a —
constraints from exhumed ancient craters, b remote sensing,
¢ - all other methods. [17]c (since superceded by
experimental results, see [18]), modern b - annual mean
modern atmospheric pressure. Modern MAVEN O loss rates
[20]b (assumed all due to CO2) extrapolated backwards in
time. Colored bars - approximate temporal extent of methods
for constraining paleopressure. Upward/downward facing
triangles indicate lower/upper bounds. Circles — estimates of
absolute atmospheric pressure/direct measurements.
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3. Bridging direct measurements, meteorites and
modelling: Detailed Mars atmospheric evolution
models rely on balancing fluxes from processes such as
impact delivery/erosion, outgassing, and loss to space,
for which many assumptions are necessary. We used a
basic 2-component model starting at present day annual
mean atmospheric pressure (including CO, in ice caps
as estimated from SHARAD data [19]%) and measured
MAVEN/MEX O loss rates [20]°. Our paleopressure
upper limits are 2 points among many others that come
from meteorite isotope data [11,12], rover
sedimentology  [15,16], and modelling results
[11,12,13,14,17]. To integrate our results with existing
knowledge, we built a basic, 2-component, process-
agnostic model for Mars’ paleopressure evolution
constrained by existing data. We gather sources and
sinks into 1 term, expressed as either a powerlaw
(APsourcc/sink = k1/3t/\(_k2/4)) or an exponential (Apsourcc/sink
= kyzexp(—t/kyy)) with free parameters k;, k; (sinks), ks
& k4 (sources). Parameters {k;, kj,... k4} are found
using upper limits of existing paleopressure estimates
(excluding [12]%, [13]° & [2]° — Fig 1) as hard
constraints on permitted pressure histories. Our model
is sensitive to the lowest implemented pressure
constraint ([15]b or [16]b; Fig 2). However, most
solutions cluster around initial atmospheric pressures
<l bar irrespective of the minimum paleopressure
constraint. This is consistent with upper limits on
atmospheric pressure from atmospheric evolution
models based on ALH84001 isotope data ([1177).

4. Climate implications from ~4-3.8 Ga: It is
possible for atmospheric pressure to vary on both short
and long timescales through atmospheric collapse
through condensation into CO, ice sheets at pressures
<0.5 bar (e.g [21]) and 100 Myr-timescale processes
such as outgassing, impact erosion/delivery of volatiles,
atmospheric escape to space, and carbonate formation
[24]. Additionally, small craters are preferentially
obliterated by sedimentation due to their reduced
topographic expression, are less likely to be exposed by
erosional cuts through a cratered volume [25], and are
more likely to be missed in crater counts due to
insufficient DTM/anaglyph resolution. It is possible to
reproduce our measured CSFDs by modifying CSFDs
for time-varying atmospheric pressure to preferentially
remove small craters, provided that the minimum
atmospheric pressure is less than our upper limits. To
reproduce the number of 15.6-22.1m diameter craters at
our Meridiani site, a minimum of 50kyrs must be spent
at pressures <<0.1 bar. Therefore, our results suggest 3
end-member paleopressure histories from ~4-3.8 Ga
(Fig 3). @ Maximum pressure <0.5 bar with episodes
of condensation of CO, into ice caps, (2) pressure

persistently below our upper estimates, (3) pressure
changes of several bar due to changes in atmospheric
sources/sinks.
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Fig 3 — Schematic illustration of 3 possible end-member
cases for Mars’ atmospheric pressure history for ~4-3.8 Ga
(vellow area). Dotted lines: pressure not directly constrained.
More paleopressure estimates are needed. For
example, there are few paleopressure constraints 3.6 to
<<1 Ga (Fig 1). More precise chronologies for climate-
altering events such as the end of the Martian dynamo
and the growth of Tharsis, would constrain the
feasibility of scenario #3. Additionally, improved
absolute dating of sedimentary deposits would reduce
the uncertainty on the ages of our sites and better
constrain the intervals in which Mars had rivers.
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