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On October 5“‘, 2017, over 80 sites in Europe, North
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Triton is the largest of Neptune’s satellites with a
radius of 1353 km. It is the only satellite, other than
Titan, to possess a significant atmosphere. Its
atmosphere (mainly composed of molecular nitrogen
N,) is special as it is in vapor pressure equilibrium Trton occultation 05 Oct 2017, DE435+nep0B1
with the N, frost at the surface. Seasonal effects on
Triton are important due to the large variations of the
sub-solar latitude, which implies that different
terrains are illuminated as time changes (Fig. 1).
Between 1990 and 2010, an “extreme solstice” °
occurred, where latitudes of up to 50° S were directly
and constantly illuminated by the Sun. This occurs
every 650 years, due to a combination of Neptune’s
heliocentric motion and Triton’s orbital precession.
Since 1989, with the Voyager 2 observations,
combined with ground-based stellar occultations, an
increase of pressure has been noted, by a factor of
around two. This increase could stem from the

Figure 1 - Triton’s subsolar latitude vs. time. Note
the exceptional character of the 2000 solstice.
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sublimation of N, ice deposited on Triton’s southern Figure 2 — Occultation chords for 40 stations across
polar cap [1]. The stellar occultation of October 5™, Triton’s atmosphere. The green cross marks Triton’s
2017, was unique, as it was the first one favourable center.

since 1997. It was visible from a large part of Europe
and Northern Africa, as well as from eastern USA,



2. Models

Refraction of stellar rays by the atmosphere causes a
stellar  flux drop, which provides Triton’s
atmospheric profiles (density, temperature, pressure,
including pgyf) from altitudes of 10 km (~ 1 pbar) to
about 100 km (0.1 pbar). Stations near centrality
experienced the so-called central flash which
constraints the sphericity of Triton’s atmosphere and
possible presence of hazes. One light curve (from the
Liverpool telescope, in La Palma) was used to derive,
through an inversion method, the pressure and
temperature profiles, down to around 10 km above
the surface (with the central flash layer lying at about
7 km above the surface).

3. Results

A temperature profile model was fitted to go to the
surface (Fig. 3) and to explain all light curves. This
results has a different shape from other models
previously used, for instance, the model used in

[2].

1440

T )
Figure 3 — Example of a temperature profile model in
black. The red and blue curves are the temperature
profile derived from the inversion of the Liverpool
telescope light curve. Note the conspicuous negative
temperature gradient at the bottom of the inverted
profiles, and the steep inversion layer necessary to
connect the inverted profiles to the surface, at ~ 38 K.

A direct comparison with our results and Voyager 2
data is possible, using the phase shift provided by [3]
(Fig. 4). Our results imply only a slight change of
atmospheric density, with a decrease of about 30%
between 1989 and 2017 near the 10 km altitude level.
These results will be discussed in the frame of a
Global Climatic Model of Triton.
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Figure 4 — The phase shift vs. altitude of the Voyager
2 radio signal, at 3.6 cm, caused by Triton’s
atmosphere in 1989, is plotted in black. The green
and red profiles are the phase shifts caused by the
inverted profile shown in Fig. 3 (occultation of
October 5™ 2017), and represent the uncertainty
domain of Triton’s shadow center.
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