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Abstract

We leveraged the extensive coverage of HST/COS ob-
servations of the far-ultraviolet (FUV) spectrum of
GJ 436 to search for metallic ions in the upper at-
mosphere of GJ 436 b, as well as study the activity-
induced variability of the star at short wavelengths. We
found that GJ 436 displays flaring events with a rate of
~10 d~1, and a long-lived activity region modulates
the FUV metallic line fluxes of the star with ampli-
tudes up to 20%. We detected the Lyman-« transit of
GJ 436 b with COS, despite the strong geocoronal con-
tamination. We could not find strong evidence for the
presence of metallic ions in the exosphere of GJ 436 b
and rule out a wide range of excess absorption levels in
the fluxes of metallic lines of the star during the tran-
sit. The previously claimed in-transit absorption in the
Si III line is likely an artifact resulting from the stellar
magnetic cycle.

1. Introduction

To this date, the most spectacular observation of at-
mospheric escape remains that of GJ 436 b: it dis-
plays a transit depth of 56% and a long egress in
the blue wing of the Lyman-« line caused by the ex-
tended tail of neutral hydrogen escaping vigorously
from the planet [1, 2]. GJ 436 b is a warm Neptune
exoplanet orbiting a nearby and relatively quiet M2.5
dwarf, and the planet lies in the lower-mass edge of
the hot Neptune desert [3, 4, 5]. One of the open ques-
tions about GJ 436 b is if it is currently losing other
species besides neutral hydrogen through atmospheric
escape. A tentative absorption signal in the Si III stel-
lar line (1206.5 A) of GJ 436 was reported by [2] using
HST/STIS, and could be of planetary nature. If proven
real, this signal would suggest that Si atoms are hy-
drodynamically dragged from the lower atmosphere of
the planet by the H atoms [6], indicating the presence
of atmospheric mixing and clouds in the lower atmo-
sphere [7]. This putative signal was, however, not re-

produced in a single transit observed with HST/COS
[8].

Aiming to resolve the open questions about
GJ 436 b and the hydrodynamical nature of the atmo-
spheric escape process, we report here on the analy-
sis of several HST/COS observations obtained for the
Hubble PanCET program (GO-14767, PIs: D. Sing
and M. Lépez-Morales) and other public datasets, cov-
ering different phases of the planetary transit in several
epochs.

2. FUYV stellar activity of GJ 436

Although GJ 436 is a quiet star compared to other M
dwarfs [9], we observe strong levels of stellar variabil-
ity in some of the lines in its FUV spectrum. Following
an inspection of the time-tag split light curve of the Si
IIT and C II fluxes, we found a statistically significant
increase in fluxes by 100% during several exposures,
which we interpret as stellar flaring activity (see Fig.
1). We estimate that the flaring rate of GJ 436 in FUV
is ~10 events d~ 1.
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Figure 1: Comparison between the quiescent (orange)
and flare (blue) spectra of GJ 436 near the Si III line at
1206.6 A.



Additionally, we found that the fluxes of the C II
doublet, the N V doublet and the Si III line in the
COS data seem to display rotational modulation. To
the best of our knowledge, such a modulation of FUV
lines in the spectra of quiet M dwarfs like GJ 436 has
not been reported in the literature before. This result
indicates that GJ 436 possessed a stable active region
in its corona that modulated the FUV fluxes for more
than 60 rotations since the early 2010s.

3. Searching for planet-induced
variability signals

We used COS airglow templates [10] to clean the
Lyman-a emission of GJ 436 from the geocoronal
contamination, and managed to reproduce the deep
Lyman-c« transit of GJ 436 b previsouly measured with
HST/STIS, indicating that the large scale atmospheric
loss of the planet is stable over the timescale of a
few years (see Fig. 2). We searched for planetary
signals during transit by phase-folding all HST/COS
exposures to the planet’s orbital period. We did not
find strong evidence for additional in-transit absorp-
tion caused by the planetary exosphere in the metallic
lines.
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Figure 2: Lyman-a transit light curve of GJ 436 b us-
ing COS (blue) and STIS (orange) exposures.

Since we were unable to reproduce the result over
several visits with HST/COS, it is likely that the Si III
absorption signal reported by [2] is related to stellar
variability instead of absorption by the exosphere of
GJ 436 b. Approximately half of the STIS observa-
tions were obtained between 2010 and 2015, when it
seems that GJ 436 was in the minimum of its activity
cycle. The non-detection of metallic species in its ex-
osphere, in particular Si, suggests that, if GJ 436 b
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Figure 3: Light curve of Si III fluxes of GJ 436 phase-
folded to the planetary transit. We could not identify
significant planet-induced signals after correcting for
stellar activity. The red symbols are not included in
the analysis.

possesses a cloudy atmosphere, then mixing is not
efficient in dragging the Si-rich clouds high enough
for sublimation and allow for a significant escape rate
of metallic ions. Other factors, such as atmospheric
metallicity and ionization conditions also play a role
in the interpretation of the non-detection.
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