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Abstract

A full statistical survey of Hermean field line reso-
nance (FLR) events is presented using the entire MES-
SENGER magnetometer dataset. A total of 566 FLRs
were observed, each characterized by a peak in the
transverse wave power with a reversal in the polariza-
tion handedness as MESSENGER traversed the res-
onant region. The fundamental frequencies of ULF
waves observed in the dayside magnetosphere were
used to provide estimates of the equatorial plasma
mass density in the range of 1-650 amu cm ™3 which
is predicted to vary approximately with R~7->. The
offset of the Hermean dipole into the northern hemi-
sphere is found to cause significant asymmetries in
the standing wave structure. The fundamental toroidal
mode is also predicted to oscillate with a notably lower
frequency than the fundamental poloidal mode, con-
trary to the relative toroidal and poloidal frequencies
modeled for Earth’s magnetosphere.

1. Introduction

Field line resonances (FLRs) have provided a unique
way of probing the closed field line region of the ter-
restrial magnetosphere, using both space and ground
based instrumentation. At Earth, toroidally polarized
ULF waves, which oscillate azimuthally, are approxi-
mately shear Alfvén waves, the frequencies of which
are determined by the distribution of plasma mass den-
sity along the field line. In this study we surveyed
the MErcury Surface, Space ENvironment, GEochem-
istry and Ranging (MESSENGER) dataset for FLRs,
then employed magnetoseismology techniques, origi-
nally developed for studying Earth’s magnetosphere,
to characterize the Hermean plasma.

Previous studies have shown that Hermean ULF
waves with frequencies similar to the local H™
and He™ gyrofrequencies (~1 Hz) [1] are common
throughout the magnetosphere. Because these fre-
quencies are so close to the local ion gyrofrequen-

cies, it has been argued that magnetohydrodynamic
ULF waves like those commonly observed at Earth
might not exist at Mercury [2, 3]. Instead, FLRs could
emerge as ion-ion-hybrid (ITH) resonances [4, 5].

A more recent study which examined wave activ-
ity throughout the Hermean magnetosphere found that
transverse ULF wave power at frequencies within the
MHD range (much lower than the local ion gyrofre-
quencies) was common throughout the closed field
line region of the magnetosphere [6]. The work pre-
sented here uses MESSENGER’s magnetometer data
to detect transverse MHD wave activity and identify
the existence of Earth-like FLRs. The FLRs are then
used to make predictions about the plasma mass den-
sities present in the Hermean magnetosphere.

2. Data Analysis

The toroidal (B;), poloidal (5,) and compressional
(B|) components of the magnetic field were Fourier
analyzed using a 120s sliding window to create a
time series of wave power and polarization throughout
MESSENGER’s mission. FLRs were found by search-
ing for peaks in transverse wave power accompanied
by reversals in polarization handedness. The observed
wave frequencies were used as a starting point for pre-
dicting plasma mass densities; a Runge-Kutta routine
was used to model the wave harmonic structure of the
resonances along the KT17 model field [7], where the
plasma mass density was varied in order to fit the ob-
served frequency.

3. Results

Figure 1 shows an example of the poloidal (a) and
toroidal (b) harmonic structure predicted for a FLR ob-
served at ~10:30 MLT. The equatorial plasma mass
density is predicted to be ~106 amu cm~3 using
the observed fundamental toroidal wave frequency of
25 mHz. The predicted wave structures are all highly
asymmetric about the magnetic equator, due to the off-



set of Mercury’s dipole into the northern hemisphere.
The predicted poloidal mode frequencies are much
higher than the toroidal frequencies, contrary to the
case in the terrestrial magnetosphere, as a result of the
different background field geometries at the two plan-
ets.
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Figure 1: Poloidal (a) and toroidal (b) harmonic wave
structure of the first three harmonics of a FLR event.

A total of 566 resonances were found and used to
predict the plasma mass density at the magnetic equa-
torial plane. The majority of these resonances were de-
tected in the dayside magnetosphere, with frequencies
typically in the range of 15-50 mHz, most of which
exhibited toroidal polarization. The average plasma
mass density is presented in figure 2, where the high-
est densities (> 500 amu cm™—3) were inferred closest
to the planet.
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Figure 2: Plasma mass density mapped to the magnetic
equatorial plane.
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