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Abstract
In this talk, we present a deep learning algorithm,
PlanetNet, to map cloud patterns on Saturn using
Cassini/VIMS data. This work was recently published
in Nature Astronomy [?]. Clouds and aerosols provide
a unique insight into the chemical and physical pro-
cesses of gas-giant planets. Mapping and characteris-
ing the spectral features indicative of the cloud struc-
ture and composition, enables an understanding of
a planet’s energy budget, chemistry and atmospheric
dynamics (e.g. [?, ?, ?, ?]). Current space mis-
sions to solar-system planets produce high-quality data
sets, yet the sheer amount of data obtained often pro-
hibits detailed ‘by hand’ analyses. Current techniques
mainly rely on two approaches: 1) identify the exis-
tence of spectral features by dividing fluxes of two
or more spectral channels; 2) perform full radiative
transfer calculations for individual spectra. The first
method suffers from accuracy whilst the second from
scalability to the whole planetary surface. Here we
developed a deep learning algorithm, PlanetNet, able
to quickly and accurately map spatial/spectral features
across large, heterogeneous areas of a planet. We
demonstrate PlanetNet on Saturn’s 2008 storm[?], en-
hancing the scope of the area previously studied. Our
spectral-component maps indicate compositional and
cloud variations of the vast region affected by the
storm showing regions of vertical upwelling, and di-
minished clouds at the centre of compact storms. This
analysis quickly and accurately delineates the major
components of Saturn’s storm, thereby indicating re-
gions that can be probed deeper with radiative transfer
models.

1. Introduction
PlanetNet is capable of non-parametrically identifying
faint features in hyperspectral images and once trained
on a given feature, able to search for it across highly
heterogeneous data sets. The algorithm consists of two
parts: 1) a spectral clustering algorithm to identify an

initial feature set; 2) a double-stream deep convolu-
tional neural network (CNN). We demonstrate our al-
gorithm on a rare detection of an ammonia ice cloud
in the southern hemisphere of Saturn. The observa-
tions of Saturn’s 2008 storm[?] are particularly well
suited for this work as they encompass multiple, ad-
jacent storms, providing a complex atmospheric fea-
ture space to be analysed by PlanetNet. In particular,
the rare ammonia ice feature, detected by [?], which
projects a “S” shaped feature on Saturn’s disk. This
data cube, along with two spatially adjacent cubes, has
previously been analysed by the spectral band devision
(I/F) method[?], which allows comparison to our ap-
proach. In this study we re-analyse the three original
cubes along with three additional adjacent data cubes,
all of which were obtained on February 9th 2008.

2. PlanetNet

PlanetNet is a convolutional neural network (NN),
trained on feature clusters derived from spectral clus-
tering. The NN contains two branches, a spatial and
a spectral channel. The spectral branch takes each
remaining spectrum and trains a two layer CNN us-
ing ReLu activation functions and two pooling layers.
Surrounding each spectrum, we compute a 20x20 spa-
tial image by averaging the spectral cube along the
spectral axis. This is the input for the spatial chan-
nel which otherwise follows the same NN architecture
as the spectral channel. By analysing both spectral and
spatial information, we can take into account the mor-
phological and spectral signatures of atmospheric fea-
tures on Saturn. In other words, a dark storm, for ex-
ample, will have a distinct spectrum and spatial mor-
phology that correlate together. By including these
spatial-spectral correlations, the neural network will
take all possible information available into account. A
schematic of the network is given in figure ??.
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Figure 1: Flowchart of the PlanetNet algorithm. The blue dots indicate the central pixel at which the spectrum is
extracted from the Cassini/VIMS data cube. The red squares indicate the corresponding spatial patches centred on
the central spectral pixels. The spatial and spectral data is fed into two convolutional neural networks for the spatial
(top network) and spectral (bottom network) information respectively. Both convolutional networks are linked to
a fully connected layer combining spatial and spectral convolutional outputs. The output of the fully connected
layer is mapped to the class labels.

3. Results

In figure ?? we show the 5 spectral clusters identified.
Here, the blue region corresponds to a large stormy
region (SR) surrounding the central dark storm (pur-
ple/green) with the previously detected “S” feature be-
ing on the western most part of the blue ammonia re-
gion. Each cluster is distinguished by its absorption
and scattering characteristics, indicative of the cloud
structure and gas composition. Most salient are the
spectral differences between the region surrounding
the dark storm features (blue region) in contrast to the
unperturbed regions (red/orange), and the unique sig-
natures of the black storms (purple/green). These SR
features, based on their 1 - 2 µm spectra and low 5 µm
flux, contain relatively large particles. We find the “S”
feature to be the proverbial “tip of the iceberg” of a
much larger region of upwelling. Baines et al.[?] hy-
pothesise that the particles found in the “S” feature
are condensed NH3 as indicated by colour maps of
the continuum (0.93 µm), methane (0.90 µm) and the
NH3 ice feature (2.73 µm). Our analysis defines the
relative spectrum of the “S” and find that the “S” spec-
trum displays an absorption feature at roughly 2.74 µm
– 2.85 µm. This is part of a broader continuum that
resembles the NH3 ice spectrum characteristic of that
observed in Jupiter’s storms[?]. Similarly, the aver-
aged spectrum of the full SR region indicates a similar
although weak ammonia ice feature.

4. Summary and Conclusions
Past and current planetary missions produce a wealth
of data, too abundant to be analysed by “hand”. More
traditional data analysis techniques force us to con-
sider only small volumes of data and a global under-
standing of spatial distributions of spectroscopic fea-
tures (e.g. clouds on gas giants) is often lost. Maps
produced by PlanetNet can give us insight into large-
scale dynamics of a planet, while identifying regions
of interest for more traditional radiative transfer calcu-
lations. This technique is significantly more sensitive
and robust than simple I/F spectral band subtraction
or division and can reveal previously unseen dynam-
ics in the atmospheres of giant planets. The ability
to identify features in data sets markedly different to
the training data (both in pixel scale and observed an-
gle) allows this technique to be easily scalable to large,
planet-wide mapping of spectral features. PlanetNet
can easily be adapted to other data sets and missions,
making it a potentially invaluable tool in the global
analysis of planetary mission data in the future.



Figure 2: Cloud distribution as mapped by PlanetNet across six overlapping data sets. Colours indicate
different types of cloud distributions: Blue: Ammonia upwelling, purple & green the inner edges of the most
prominent dark storm, orange & red high altitude methane clouds. It is apparent that the SR feature (blue) occurs
in the vicinity of dark storms but covers significantly larger areas than previously thought.
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