

Thermal Inertia Maps of (101955) Bennu from OSIRIS-REx Infrared Observations

B. Rozitis (1), J. P. Emery (2,3) A. Ryan (4), P. R. Christensen (5), V. E. Hamilton (6), A. A. Simon (7), D. C. Reuter (7), B. E. Clark (8), M. Delbo (9), E. S. Howell (4), L. F. Lim (7), M. C. Nolan (4), H. C. M. Susorney (10), K. J. Walsh (6), D. S. Lauretta (4), and the OSIRIS-REx Team.

(1) Open University, Milton Keynes, UK (benjamin.rozitis@open.ac.uk), (2) University of Tennessee, Knoxville, TN, USA, (3) Northern Arizona University, Flagstaff, AZ, USA, (4) Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA, (5) Arizona State University, Tempe, AZ, USA, (6) Southwest Research Institute, Boulder, CO, USA, (7) NASA Goddard Spaceflight Center, Greenbelt, MD, USA, (8) Ithaca College, Ithaca, NY, USA, (9) Observatoire de la Côte d'Azur, Nice, France, (10) University of British Columbia, Vancouver, Canada.

Abstract

OSIRIS-REx has obtained spatially-resolved infrared observations of asteroid (101955) Bennu from the mission's Detailed Survey phase. We produced thermal inertia maps of Bennu from these observations by using a thermophysical model, and we find definitive spatial variations in Bennu's thermal inertia.

1. Introduction

Asteroid (101955) Bennu is the target of NASA's OSIRIS-REx mission, which will return a sample of ≥ 60 grams of regolith from its surface [1]. Before picking up the sample from the surface, OSIRIS-REx will have spent more than a year characterising the surface with cameras, spectrometers, and the laser altimeter that are onboard the spacecraft. The primary data set to be used for thermophysical analyses are thermal spectra from the OSIRIS-REx Thermal Emission Spectrometer (OTES) [2]. Additionally, the long-wavelength end of spectra obtained by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) will also be dominated by thermal emission [3].

From the Approach phase of the mission, disk-integrated data returned by OTES and OVIRS confirmed the previous Spitzer-based thermal inertia measurement of Bennu [4]. In particular, a thermal inertia of $350 \pm 20 \text{ J m}^{-2} \text{ K}^{-1} \text{ s}^{-1/2}$ and a surface roughness RMS slope of $43 \pm 1^\circ$ were derived from OSIRIS-REx thermal emission lightcurves and the updated shape model of Bennu [5]. These observations also found no significant variations in thermal inertia, or surface roughness, with rotational phase.

While the Approach-phase observations rule out large hemispheric differences in thermal inertia, they do not rule out smaller-scale variations. During the Detailed Survey phase of the mission, OTES and OVIRS measured the infrared radiation from the surface at ~ 20 - to ~ 40 -m spatial scales, enabling us to produce detailed maps of thermal inertia and roughness for the entire surface of Bennu. Such maps will aid in the interpretation of local variations seen in the geology and/or composition on the surface of Bennu.

2. Observations & Methods

During the Detailed Survey phase, OTES and OVIRS observed the surface of Bennu at seven different local times of day (i.e. 3:20am, 6am, 10am, 12:30pm, 3pm, 6pm, and 8:40pm). Thermophysical analysis of these data was carried out with a custom thermal model that is based on the Advanced Thermophysical Model of Rozitis and Green [6,7,8]. See Figure 1 for an example comparison between predicted and observed brightness temperatures for a 12:30pm station.

3. Results

An initial analysis using data collected from the first "baseball diamond" station on 7 March 2019 finds definitive spatial variations in thermal inertia. In particular, local thermal inertia values range from ~ 200 to $\sim 500 \text{ J m}^{-2} \text{ K}^{-1} \text{ s}^{-1/2}$ whilst the global average thermal inertia value remains $\sim 350 \text{ J m}^{-2} \text{ K}^{-1} \text{ s}^{-1/2}$. Unexpectedly, the lowest thermal inertia values are associated with the largest boulders on Bennu, and the highest thermal inertia values are found on some of the smoother regions on Bennu. This unexpected result prompts a re-evaluation of the interpretation of

thermal inertia for small rubble-pile asteroids, and provides insight into the nature of the unusual boulders found on the surface of Bennu [9].

4. Summary and Conclusions

We will present the thermal inertia maps produced by our thermophysical analyses of the OSIRIS-REx infrared observations, and we will also discuss the new maps in context with other results.

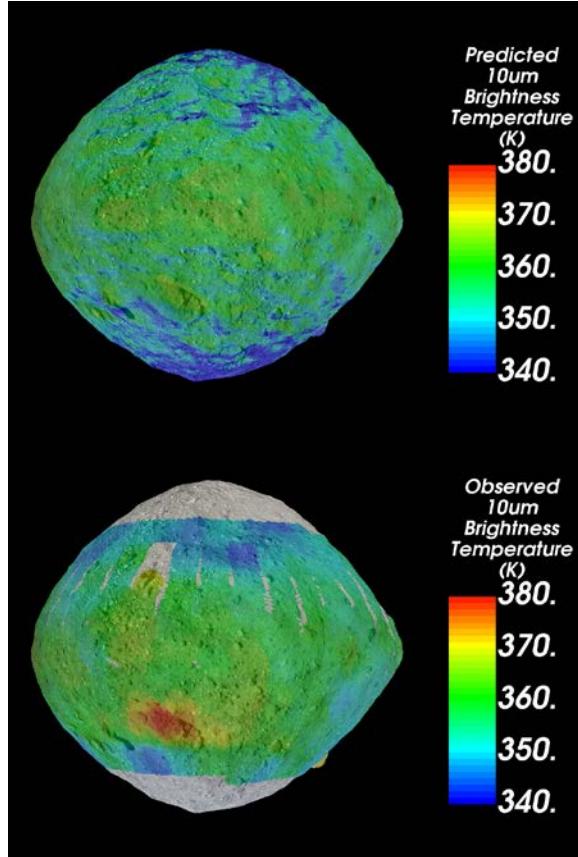


Figure 1: (a) Predicted 12:30pm 10- μ m brightness temperatures for a uniform thermal inertia of 350 $\text{J m}^{-2} \text{K}^{-1} \text{s}^{-1/2}$. (b) 10- μ m brightness temperatures as observed by OTES. Differences between the two images indicate the presence of local variations in thermal inertia.

Acknowledgements

BR acknowledges support from the Royal Astronomical Society (RAS) and the UK Science and Technology Facilities Council (STFC). This material is based upon work supported by NASA under

Contracts NNM10AA11C and NNG12FD66C issued through the New Frontiers Program.

References

- [1] Lauretta, D.S. et al.: OSIRIS-REx: Sample Return from Asteroid (101955) Bennu, *Space Sci Rev.* 212, 925-984, 2017.
- [2] Christensen, P.R. et al.: The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument, *Space Sci Rev.* 214, id87, 2018.
- [3] Reuter, D.C. et al.: The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu, *Space Sci Rev.* 214, id54, 2017.
- [4] Emery, J.P. et al.: Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu, *Icarus* 234, 17-35, 2014.
- [5] DellaGiustina, D.N. and Emery, J.P. et al.: Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis, *Nature Astronomy* 3, 341-351, 2019.
- [6] Rozitis, B. and Green, S.F.: Directional characteristics of thermal-infrared beaming from atmosphereless planetary surfaces - a new thermophysical model, *MNRAS* 415, 2042-2062, 2011.
- [7] Rozitis, B. and Green, S.F.: The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects, *MNRAS* 423, 367-388, 2012.
- [8] Rozitis, B. and Green, S.F.: The influence of global self-heating on the Yarkovsky and YORP effects, *MNRAS* 433, 603-621, 2013.
- [9] Ryan, A. et al.: Physical Interpretation of Bennu's Thermal Inertia, EPSC-DPS Joint Meeting, 2019 (abstract).