
Oxygen in the Ganymede's surface: new laboratory measurements

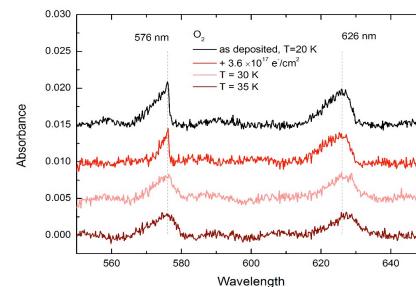
A. Migliorini (1), S. Ioppolo (2), Z. Kanuchova (3,4), G. Strazzulla (4), G. Piccioni (1), F. Tosi (1)

(1) IAPS-INAF, Rome, Italy, (2) Queen Mary University of London, (3) Astronomical Institute, Slovakia, (4) INAF-Observatory of Catania (alessandra.migliorini@inaf.it)

1. Introduction

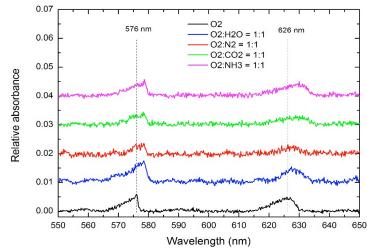
Molecular oxygen has been detected on the surface of the Galilean satellites [Spencer et al., 1995; Spencer and Calvin, 2002], possibly trapped in the icy surface. Dedicated laboratory experiments showed the nature of the observed features and allowed to infer some hypothesis on the nature of O₂ in the surface matrix [Vidal et al. 1997]. The observed spectral features, centered at 577.4 nm and 627.3 nm, are indicative of double electronic transitions in adjacent O₂ molecules, following the transition:

A better understanding and characterization of these features is necessary to constraint the properties of the Galilean moons' surfaces.


Our work aims to present new laboratory measurements of pure O₂ ice and its mixtures with H₂O, N₂, CO₂ and NH₃ in the visible spectral range, which are also interesting for the Galilean satellites. Comparison with high-resolution ground-based observation of Ganymede, showing the two spectral features diagnostic of solid O₂ is also presented. A different and new setup is used to allow ice irradiation with low energy electrons.

In addition the present work contributes to a database of spectra, which will be of basic importance to analyse spectroscopic data acquired with the MAJIS spectrometer to be included as payload in the ESA/Juice mission to the Jovian system.

2. Laboratory measurements


Laboratory measurements have been carried out using the Open University (England) portable astrochemistry vacuum chamber attached to the ultraviolet vacuum beamline of the synchrotron ASTRID 2 facility at the Aarhus University (Denmark).

The icy surfaces of the Galilean moons were simulated and studied in the 550-650 nm spectral region. The energetic processing was simulated through irradiation with 1 keV electrons [Jones et al. 2014]. Fig. 1 shows the effects of irradiation and annealing on pure O₂.

Fig. 1 O₂ spectrum, deposited at 20K (black curve) and after irradiation and annealing.

The features under investigation, centred at about 577 and 627 nm, are observed in all spectra (Fig. 2), although differences between pure O₂ layer and mixtures are identified. A band shift towards longer wavelengths may be due to the mixture that causes different photon excitations during optical absorption [Sack and Baragiola, 1993].

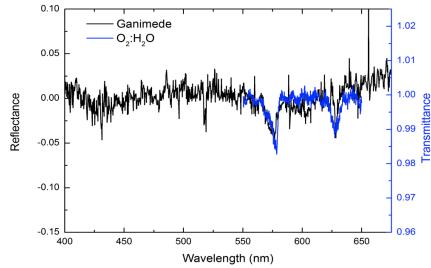


Fig. 2 Absorbance spectra of pure O₂ and its 1:1 mixtures with H₂O, N₂, CO₂ and NH₃. The two bands diagnostic of O₂ are observed in all spectra with differences in the shape and peak position.

3. Preliminary results

Our laboratory measurements are in general agreement with previous works, despite the different sample production techniques and experimental conditions.

Comparison with ground-based observations, obtained at Telescopio Nazionale Galileo (TNG) in January 2015, shows that the O₂:H₂O mixture better approximates the Ganymede's spectrum (Fig. 3).

Fig. 3. Comparison between a spectrum of Ganymede obtained with the TNG telescope in January 2015 (black curve) and laboratory measurement of O₂:H₂O mixture (in blue).

Our measurements will be useful to analyse the Ganymede's data, which will be acquired with MAJIS on the Juice mission.

References

- [1] Spencer et al. (1995), Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede, *J. Geophys. Res.*, 100, 19049-19056.
- [2] Spencer and Calvin (2002), Condensed O₂ on Europa and Callisto, *The Astronomical Journal*, 124, 3400-3403.
- [3] Vidal et al. (1997), Oxygen on Ganymede: Laboratory studies, *Science*, 276, 1839.
- [4] Jones et al. (2014), Uv-Vis, Infrared, and Mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water, *The Astrophysical Journal*, 781.
- [5] Sack and Baragiola (1993), Sublimation of vapour-deposited water ice below 170 K, and its dependence on growth conditions, *Phys. Rev. B*, 48, 9973-9978.