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Abstract
We explore the application of Mixture Density Neu-
ral Networks (MDN) to the interior characterization
of exoplanets. Using a 1D interior structure code, we
construct a large training set of synthetic Super-Earths
and sub-Neptunian exoplanets up to 25 Earth masses.
A model planet consists of an iron-rich core, a sili-
cate mantle, a water ice layer, and an H/He envelope,
all constrained by prescribed mass fractions. Using a
mixture density network trained on a large data set of
such modelled planets, we show to what extent the dis-
tribution of possible model solutions can be predicted
from just mass and radius. Furthermore, we show that
the inclusion of the fluid Love number k2, bearing in-
formation on the mass distribution in the interior, can
significantly increase the prediction accuracy of the
model.

1. Introduction
The interior characterization of observed exoplanets is
one of the main goals in current exoplanetary science.
With the large number of newly discovered exopla-
nets expected in the next ten years by TESS [1] and
the upcoming PLATO [2] and JWST [3] missions, a
rapid characterization scheme of the interior structure
of these planets will become increasingly necessary to
further our understanding of planetary populations.

A common approach to the interior characterization
of exoplanets is the use of numerical models to com-
pute interior structures which comply with the mea-
sured mass and radius of the planet [6]. With only
these two observables, possible solutions tend to be
highly degenerate, with multiple, qualitatively differ-
ent interior compositions that can match the observa-
tions equally well. As this is an inverse problem, it
usually necessitates the calculation of a large number
of interior models to obtain an overview over possi-

ble interior structures, which can be computationally
expensive, in particular if more observables than just
mass and radius are used due to the higher dimension-
ality of the problem. An additional potential observ-
able, which could help break the degeneracy, is the
fluid Love number k2, bearing information on the mass
concentration in the interior of the planet [4].

In this study, we apply a Deep Learning method to
the interior structure calculation of exoplanets based
on observed mass and radius. Instead of calculating
the interior structure for every planet individually, we
initially create a large data set of synthetic planets and
train a mixture density network (MDN, [5]) to infer the
distribution of the thickness of all planetary interior
layers. Mixture density networks are a special case
of neural networks, which predict the parameters of a
Gaussian mixture distribution instead of single output
values.

2. Model Setup
We use our interior structure model TATOOINE (Tool
for Atmospheres, Outgassing and Optimal Interiors of
Exoplanets) to construct a large set of synthetic plan-
ets to train a Mixture Density Network. Each modeled
planet consists of an iron-rich core, a silicate mantle,
an high-pressure ice layer, and a H/He gaseous enve-
lope with solar-like composition. The mass of each
layer is constrained by a predefined mass fraction. The
mass fractions of all layers add up to one. The core
and mantle materials are assumed to have an Earth-
like mineralogical composition.

We follow an approach by Bishop (1994) [5] to
construct a Deep Learning Mixture Density Network
(MDN) to approximate the range of interior solutions
for a given mass and radius of the target planet. At
its core, the MDN consists of a conventional feed-
forward neural network. In contrast to a conventional
neural network, however, which maps the input val-
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Figure 1: Schematic of the mixture density network architecture used in this work. A large training set of synthetic planets is used to train
an MDN with 2 hidden layers. The MDN predicts the parameters of a Gaussian Mixture model corresponding to the probability distribution of
interior solutions fitting the input parameters.

ues to discrete output values, the output layer in an
MDN uses a Gaussian Mixture model as output, pre-
dicting the parameters of the probability distribution
of the input data. In our case, the MDN is trained
to predict the relative thickness of each interior layer.
We use an MDN with 2 hidden layers of 512 neurons
each. We explore two scenarios concerning the input
variables: having only mass and radius as inputs, and
having mass, radius, and the fluid Love number k2 as
inputs.

3. Results

Figure 2: Predicted layer thickness distribution plotted against the
actual value from validation data for each of the four interior layers
when using mass, radius, and k2 as network inputs. A perfectly
accurate MDN would plot on the dashed blue line.

We find that the MDN trained on mass and radius
is able to infer the distribution of the core size and en-

velope thickness fairly close to the distributions ob-
tained by conventional Monte-Carlo sampling. How-
ever, it tends to underestimate the thickness of the
high-pressure ice layer, and fails to predict the thick-
ness of the silicate mantle accurately.

Using mass, radius, and k2, the prediction accuracy
of every layer increases significantly (see Fig.2). For
the Earth, the MDN can predict the correct interior
structure to within a few percent of the real value.
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