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Abstract

The work presented here is mainly based on the pa-
per: Discrete velocity model for an escaping single-
component atmosphere by William J. Merryfield and
Bernie D. Shizgal [3]. We have reproduced their
model in order to contrast it with Direct Simulation
Monte Carlo models as well as to apply it to different
planetary bodies’ atmospheres. Also, we wish to show
advantages of using discrete velocity method, such as
computation time gain, numerical error reduction and
scientific relevance regarding planetary atmospheres.

1. Introduction

Understanding the evolution of an atmosphere along
with its composition is of crucial interest in planetary
science. It can allow us to comprehend the current
state of some planetary bodies’ atmospheres as well
as to study its evolution. One important process af-
fecting the atmosphere is atmospheric loss. There are
two types of atmospheric loss mechanisms, thermal
and non-thermal escape. In the former we can find two
extreme cases, one is the Jeans or evaporative escape
and the other one is the hydrodynamic escape. We fo-
cus our work on thermal escape and will compare it
to the Jeans escape, which is a representative case for
most planetary atmospheres.

To correctly model atmospheric escape, one must
model the upper atmosphere and exosphere, including
the transition from collisional to collisionless regimes.
In the last decades the most commonly used method
has been the Direct Simulation Monte Carlo (DSMC)
[2, 4]. This method suffers from statistical noise and
becomes slow when simulating denser and lower parts
of atmospheres. These reasons are mainly why we
wished to apply the Discrete Velocity Method, as in
[3], and try to find possible improvements in order to
have a more efficient method.

2. Discrete velocity method
The Discrete Velocity Method (DVM) is a numerical
technique often used in rarefied gas dynamics to solve
the Boltzmann equation. The technique discretizes the
velocity space and solves the PDE using finite differ-
ence schemes. The number of equations in the sys-
tem is product of the number of spatial and velocity
grid points; this means that the number of equations
to be solved can become quite large. Typically, the
most time consuming operations are those performed
to compute the collisional integral of the Boltzmann
equation described below. Because we are using finite
difference, the error in our solution can be character-
ized using standard numerical error analysis, as op-
posed to DSMC which can be dominated by statistical
noise.

3. Atmospheric escape process
To solve the problem of escaping single-component at-
mosphere we need to solve the nonlinear Boltzmann
equation. Assuming spherical symmetry, we consider
the radial dependence and cartesian coordinates for the
velocity space, this equation can take the following:
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where C is the collision term restricted to binary colli-
sions and whose discretized form is given as:

C[fi] =
p∑

j=1

∑
k,l

Akl
ij (fkfl − fifj)/∆v3 (2)

The sum over j account for all the possible collisions
between pairs of particles formed with particles of ve-
locity vector ~vj and ~vi in the discrete and finite veloc-
ity space. The p variable is for the number of velocity
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vectors in the 3D velocity space. The sum over k and
l is for all the outcomes formed after a particular colli-
sion that respect the conservation of momentum and
kinetic energy. A takes into account the collisional
cross section, relative velocity and total number of out-
comes.

Using combination of numerical finite difference
schemes we solve for fi(t, ~v, r), which is the veloc-
ity distribution of particles.

Figure 1: Plot of the distribution scaled to the Maxwell distribution versus vz

and vx at rmax after 16400s for a free molecular flow model. The model
used an unequal grid in r with forty points, an equal grid in v with twelve
points in each component of velocity.

In Figure 1 we plot the results of a simulation of
free molecular flow scaled to the Maxwell distribution.
The depletion area is due to escaping particles, which
we enforce as an upper boundary condition. From this
type of solutions we are able to compute a series of
macroscopic variables such as number density, tem-
perature, bulk velocity components and the heat flux
that characterize the atmosphere. The escape flux is
calculated also as follows:

FEscape =
∑

i

vif(t, vi, r)(∆v)3 (3)

where i means particles having a velocity magnitude
equal or greater than the escape velocity and directed
upwards.

4. Summary and Conclusions
We apply DVM to a simple case of atmospheric es-
cape to obtain the velocity distribution in the upper
atmosphere. This method correctly models the tran-
sition from the collisional to collisionless regimes of
the atmosphere. We compare our solution to the more
standard DSMC method. We also compare the per-
formance of the models, both the errors and compu-
tational effort. The promising results encourage us to

foresee more complex situations of the model, for ex-
ample including multiple species or photochemistry.
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