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Abstract 

We present the first results of water ice and dust 

microphysical properties derived from the Nadir and 

Occultation for Mars Discovery (NOMAD) 

instrument, onboard ExoMars Trace Gas Orbiter 

(TGO). These retrievals are derived from vertical 

profiles that span the entire science phase so far, which 

began April 21st, 2018.  

1. NOMAD instrument 

The NOMAD spectrometer onboard ExoMars TGO 

operates in the wavelength range between 0.2-4.3 μm 

[1]. This instrument suite has three spectral channels: 

a solar occultation channel (SO – Solar Occultation; 
2.3-4.3 μm), a second infrared channel capable of 

nadir, solar occultation, and limb sounding (LNO – 

Limb Nadir and solar Occultation; 2.3-3.8 μm), and an 

ultraviolet/visible channel (UVIS – UV visible, 200- 

650 nm). The infrared channels (SO and LNO) have 

high resolving power (λ/dλ~10,000-20,000) provided 

by an echelle grating in combination with an Acousto 

Optic Tunable Filter (AOTF), which restricts the 

bandpass width and selects the observed diffraction 

order [2]. The infrared channels were derived from the 

Solar Occultation in the IR (SOIR) instrument [3] 

onboard Venus Express. The high sampling rate (1 

second) of SO measurements provides unprecedented 

vertical resolution (~ 1 km), which span altitudes from 

the surface to ~200 km. Moreover, the instantaneous 

change of the observed diffraction orders, made 

possible by the AOTF, enables the SO channel to 

measure five or six different diffraction orders per 

second.  

In this study, we combine broadband (2700 to 4300 

cm-1) information in single occultations to infer the 

vertical structure of dust and water ice profiles. The 

sensitivity and accuracy of this kind of analysis is 

maximized when the diffraction orders observed are 

not heavily affected by molecular extinction due to 

CO2. The characterization of the sensitivity of each 

diffraction order to dust and water ice is performed as 

a preliminary step to the retrievals, according to the 

calibration scheme developed for the NOMAD 

instrument [4]. The combined broadband 

transmittance (I/F) has been used to infer the dust and 

water ice concentrations and their particle size, for 

each altitude from 0 to 100 km in each occultation. 

Data have been analyzed with the Planetary Spectrum 

Generator (PSG [6]) developed at NASA GSFC, 
which embodies a full retrieval package based on a 

state-of-art implementation of Optimal Estimation [7]. 

2. Water ice vertical profiles 

Using the data acquired by NOMAD from April 2018 

to April 2019, we have analyzed the vertical 

distribution of water ice from the surface up to 110 km, 

as well as the vertical variation of particle size. The 

measurements acquired between June and September 

2018, coincide with a Planet Encircling Dust Event 

(PEDE). The effect of this storm on the properties and 

localization of water ice clouds is presented and 

discussed in depth. We find that high altitude 

(mesospheric) water ice clouds are detected frequently 

and that their microphysical characteristics differ from 

low-altitude clouds. Their altitude has also been 

observed to abruptly increase as the PEDE starts, and 

the velocity at which this happens (of the order of a 

Martian day) can provide feedback about the 

dynamics behind high altitude cloud formation. We 

have also characterized the latitudinal distributions of 

water ice clouds, and we elaborate on the implications 

of these observations to the advance of the current 

knowledge of the water cycle on Mars [5].  
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3. Dust vertical profiles 

We have simultaneously retrieved dust vertical 

profiles of concentration and average particle sizes for 

this same dataset. We discuss the temporal evolution 

and morphology of dust profiles, with particular 

attention to the PEDE and a second, less intense dust 

storm in January-February 2019. This provides 

evidence for the thermal effects of dust on the 

atmosphere, and its role in cloud formation processes. 

In particular, we have found that dust can lift up in the 

atmosphere to altitudes ~60 km during dust storms, 

forming suspended layers with complex vertical 

structures.  

Figure 

 

Figure 1: Example of water ice vertical profile retrieved 

from the NOMAD-SO data before the global dust storm in 

2018 (LS = 171.45° and latitude 43° N–68° N) [5].  
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