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1. Introduction

Jupiter’s stratospheric circulation is still poorly known
to this day. Observations of trace species reveal sev-
eral features (for instance, the puzzling distributions of
ethane and acetylene, by-products of the photochem-
istry ; or that of CO, and HCN, by-products of comet
Shoemaker-Levy impact) left unexplained by current
models coupling chemistry with simple parametriza-
tion of meridional and vertical transport. We aim at
developing a 3D General Circulation Model (GCM)
from the troposphere to the upper stratosphere to ad-
dress these questions. In this context, the calculation
of heating and cooling rates has to be robust and fast,
as these quantities need to be computed on a high-
resolution grid, every few Jupiter days and for sev-
eral Jupiter years. This abstract focuses on an efficient
1-D radiative-convective model (as part of an under-
development 3D GCM). After reviewing the main in-
gredients of our 1-D model, we present the thermal
structure obtained at equilibrium and compare it to
temperatures derived from thermal infrared spectrom-
eters (Cassini/CIRS and TEXES/IRTF). We then use
the net heating rates to estimate the residual-mean cir-
culation, under the assumption that eddy heat flux con-
vergence is negligible compared to diabatic forcing.

2. Radiative-equilibrium model

Our Jupiter radiative-convective model is adapted
from its Saturn counterpart [S]. These two giant plan-
ets share many characteristics and the main physical
parametrizations are the same: a k-distribution model
is used to compute gaseous opacities, a two-stream ap-
proximation solves the radiative transfer equations (in-
cluding multiple scattering) and a convective adjust-
ment scheme relaxes the temperature profile towards
the adiabatic lapse rate when unstable lapse rates are
encountered. An internal heat flux, set to 7.48 W.m~2,
is also taken into account. Our vertical grid consists of
64 layers, from 3 bar to 3 pbar.

We take into account gaseous opacity from the three
main hydrocarbons (methane, ethane and acetylene),
ammonia, and collision-induced transitions by Ho-Hso
and Hy-He. Regarding aerosols, we include an ammo-
nia cloud with a clouddeck at 800 mbar, a tropospheric
haze layer extending from 150 to 700 mbar, an opti-
cally thin stratospheric haze layer, and another more
opaque stratospheric haze of putative auroral origin.
The latter comprises fractale aggregates and its opti-
cal properties and latitudinal distribution is taken from
[7], being more abundant poleward of 50S and 30N.

3. Comparisons to observations

Our radiative-convective model is run for 10 Jupiter
years until equilibrium is reached. We show in Figure
1 the temperature as a function of latitude at the 10-
mbar and 0.5-mbar pressure levels, compared to the
temperature measured by Cassini/CIRS and ground-
based TEXES/IRTF observations [3]. We also show,
for comparison, the equilibrium temperature obtained
when neglecting auroral aerosols. Including auroral
aerosols improves the agreement with observations by
warming high latitudes by ~15K at the 10-mbar level.
The small north-south asymetry between 60N and 60S
observed at 10-mbar is well reproduced by our model
and results from seasonal radiative forcing. However,
at pressures lower than 1 mbar, our modeled tempera-
tures are systematically lower than observations at low
latitudes, pointing to a missing mechanism (a missing
radiative contribution, or heating by wave deposition
for instance).

4. Residual-mean circulation

Stratospheric circulation is driven by a combination
of diabatic and mechanical forcings, resulting in a
combination of transport processes: advection, stir-
ring and mixing. On the Earth stratosphere, it has been
shown that the Transformed Eulerian Mean (TEM) cir-
culation was a good approximation to the Lagrangian
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Figure 1: Temperature at radiative equilibrium (solid
lines) compared to Cassini/CIRS and TEXES obser-
vations (stars). The dashed line is for a simulation ne-
glecting stratospheric auroral aerosols.

mean circulation (relevant to tracer transport) in re-
gions where wave breaking and dissipation was rela-
tively weak [2, 1]. We follow this approach to estimate
the two components (v*, w*) of the residual-mean cir-
culation. We combine a mass-conservation equation:
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where overlines denote zonal averages, 6 potential
temperature, pg density, a planetary radius, ¢ latitude,
z altitude, Q the net radiative heating rate and £ the
heating rate related to eddies forcing the mean flow.
Equations 1 and 2 are solved using an iterative
method under the approximations £ ~ 0 (we neglect
the eddy heat flux convergence term) and 96 /0t ~ 0.

In the lower stratosphere (1 to 20 mbar), the
residual-mean circulation we obtain is characterized
by two meridional cells with rising motion at high
latitudes - where the polar stratospheric haze induces
significant net radiative heating - and subsidence at
10S. In the lower (20-80 mbar) and upper (0.01-
1 mbar) stratosphere, the residual-mean circulation ex-
hibits upwelling motion at the equator and subsidence
at both poles, which is a consequence of the net ra-
diative heating at low latitudes and net radiative cool-
ing at the poles. Between 30 and 1 mbar, our residual
mean stratospheric circulation resembles that obtained
by [6], derived from Voyager temperature fields. How-
ever, as discussed by [4], this circulation is too weak
and fails to explain the rather rapid dust migration ob-
served after SL-9 impact. Future work will be devoted
to estimate the contribution of eddies to the meridional
circulation, which can be done with our GCM.
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