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Abstract
More than two decades of exoplanetary science have
unveiled an abundance of planetary bodies, many
of which are expected to reside in environments much
harsher than experienced at the orbit of planet Mer-
cury. Besides being constrained by the surface condi-
tions, which are related to the planet’s distance from
the host star, the inner life of close-in bodies is pro-
foundly shaped by tidal heating, which depends on the
elements of planetary orbit.

The semi-major axis as well as the eccentricity
of the orbit can be altered particularly by the two fol-
lowing secular mechanisms: tidally induced orbital
evolution due to the host star and third-body perturba-
tions due to another planets in the system. Our goal is
to include both of these effects into a self-consistent
model of coupled thermal-orbital evolution and ex-
plore its implications for the secular dynamics of low-
mass exoplanets.

1. Model and methods
The model consists of four subproblems: 1) calcu-
lating the planet’s tidal Love number, given its inter-
nal structure; 2) solving the evolution equations for
planet’s spin and orbit; 3) calculating radially depen-
dent tidal heating, given the strain and stress under
the actual external potential; and 4) finding the mantle
viscosity (and thickness of the lithosphere) consistent
with the obtained tidal heating and estimated radio-
genic heating in a 1D parametrized model of mantle
convection.

We approximate the planet by a layered sphere
whose reaction to the external loading is characterized
by either the Maxwell or the Andrade viscoelastic rhe-
ology and calculate its frequency-dependent complex
Love numbers k̃l(ωlmpq) = kl e

iεlmpq by means of
the normal mode theory [1]. Complex Love numbers
describe the magnitude of the disturbing potential in-
duced by tidal deformations of the planetary surface,

together with the lagging of this deformation due to
attenuation inside the body. The disturbing potential
can then be expressed as a serie [2]

δUtide =
∑

lmpq

klR
2l+1B∗lmC∗lmpq

∑
hj

Clmhj ×

× cos
[
ν∗lmpq − εlmpq −mθ∗ − (νlmhj −mθ)

]
,

(1)

where Blm includes algebraic prefactors and mass of
the perturber, Clmpq characterizes shape and inclina-
tion of the orbit, R is the outer radius of the studied
planet, θ the sidereal time and νlmpq is a combination
of angular variables. Asterisk signifies that some vari-
ables are defined with respect to the perturber and the
others with respect to the body whose motion is dis-
turbed due to the tidally deformed planet (see [2] for
details).

Similarly, for the sake of consistency, we describe
the third-body perturbations by a disturbing function
expanded into a Fourier serie,

δUthird = GmB

∑
indices

an
<

an+1
>

DI0 (iB)GI1 (eA) GI2 (eB) ×

× cos
[
(n− 2p1 + q1)MA + (n− 2p2 + q2)MB+

+ (n− 2p2)ωB + (−n+ 2p1) ΩB

]
(2)

with mB being the mass of the perturber, iB , ωB and
ΩB are angular Keplerian elements of the perturber’s
orbit with respect to the studied planet’s orbit, a and
e are the semi-major axes and eccentricities of the
two planets (A and B) and M are the respective mean
anomalies at the time of the computation. Function
DI0 is defined in analogy with Kaula’s functions of
inclination, GI1,2 are Kaula’s functions of eccentricity
and I0,1,2 symbolize the appropriate multiindices.

Both of the disturbing functions (1) and (2) drive the

EPSC Abstracts
Vol. 13, EPSC-DPS2019-819-1, 2019
EPSC-DPS Joint Meeting 2019
c© Author(s) 2019. CC Attribution 4.0 license.



Figure 1: Long-term evolution of the tidal heat flux (left), the average mantle temperature (centre) and the spin rate
(right) for a model of low-mass exoplanet Proxima Centauri b. Different shades of blue indicate different orbital
eccentricities, which are almost constant on the presented time scales. The initial effective tidal viscosity of the
mantle, governed by the Maxwell rheology, was set to 5× 1019 Pa s.

long-term evolution of the two planetary orbits, whose
exact form is obtained from the Lagrange planetary
equations (e.g., [3]). Additionaly, the change in each
planet’s spin rate is derived as a consequence of the
conservation of total angular momentum.

Together with its contribution to the orbital evolu-
tion of close-in exoplanets, tidal interaction with the
primary is also an important source of their internal
heating. Radial dependence of the average tidal heat-
ing is calculated using an expanded version of the
method described in [4], which is applicable to bodies
with arbitrary orbital eccentricity and spin rate. Note
that this method is also derived using the normal mode
theory of [1].

Finally, the secular cooling of the planet is described
by a 1D parametrized model of subsolidus convection
in a mantle heated both volumetrically and from be-
low. For the mantle viscosity, a parameter influencing
vigour of the convection as well as the rate of orbital
evolution, we prescribe temperature dependence of the
form (e.g., [5])

η = η0 exp

(
E∗

RG

(Tref − T )

TrefT

)
(3)

with η0 = η(Tref), where Tref = 1600 K is the refer-
ence temperature, E∗ is the activation energy for vis-
cous deformation andRG is the universal gas constant.

2. Preliminary results
Calculations performed for a single-planet system in-
dicate, that depending on the initial mantle viscos-

ity and the orbital eccentricity, the long-term cou-
pled thermal-orbital evolution leads the planet either
to gradual cooling down and stiffening of its mantle,
or towards a thermal runaway, which can transform
the planet into a magma world. Evolution of the inte-
rior then affects also the stable spin state of the planet.
An example of this effect is shown in Figure 1, which
presents the eccentricity-dependent tidal heating and
consequential despinning of a model planet inspired
by Proxima Centauri b.
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