

Ground-based mapping of SO₂ and HDO on Venus in the thermal infrared

T. Encrenaz (1), T. Greathouse (2), E. Marcq (3), H. Sagawa (4), T. Widemann (1), B. Bézard (1), T. Fouchet (1), F. Lefèvre (3), S. Lebonnois (5), S. Atreya (6), Y. J. Lee (7), R. Giles (2), S. Watanabe (8)
(1) LESIA, Paris Observatory, PSL, France (therese.encrenaz@obspm.fr), (2) SwRI, San Antonio, TX, USA, (3) LATMOS, CNRS/UVSQ/UPMC/IPSL, France, (4) Kyoto Sangyo University, Kyoto, Japan, (5) LMD, IPSL, Paris, France, (6) University of Michigan, Ann Arbor, MI, USA, (7) University of Tokyo, Kashiwa, Japan, (8) Hokkaido Information University, Ebetsu, Japan

Abstract

Since January 2012 we have been monitoring the behavior of sulfur dioxide and water on Venus, using the Texas Echelon Cross-Echelle Spectrograph (TEXES) imaging spectrometer at the NASA InfraRed Telescope Facility (IRTF, Mauna Kea Observatory). Data were recorded around 1345 cm⁻¹ (7.4 μm) and 530 cm⁻¹ (19 μm). The molecules SO₂, CO₂, and HDO (used as a proxy for H₂O) were observed at the cloudtop of Venus at 7.4 μm, and a few km below at 19 μm. The volume mixing ratio of SO₂ was estimated using the SO₂/CO₂ line depth ratios of weak transitions; the H₂O volume mixing ratio was derived from the HDO/CO₂ line depth ratio, assuming a D/H ratio of 200 times the terrestrial value (VSMOW). The SO₂ mixing ratio shows strong variations with time and over the disk, showing evidence for the formation of SO₂ plumes with a lifetime of a few hours; in contrast, the H₂O abundance is remarkably uniform over the disk and shows moderate variations as a function of time. We performed a statistical analysis of the behavior of the SO₂ plumes, using all TEXES data at 7.4 μm between 2012 and 2018. The plumes appear mostly located around the equator. Their distribution as a function of local time seems to show a depletion around noon, which remains to be confirmed. There is a good agreement between the TEXES results and those obtained in the UV range (SPICAV/Venus Express and UVI/Akatsuki) at a slightly higher altitude. A comparison of TEXES data at 7.4 and 19 μm can be used to retrieve information about the vertical distribution of SO₂, which shows a depletion above the cloudtop [1–4].

1. Short-term variations of SO₂

Figure 1 shows examples of SO₂ and HDO maps recorded with TEXES. The two pairs of SO₂ maps, separated by 2 hours, were taken on two consecutive days. It can be seen that the SO₂ distribution is very patchy; the SO₂ plumes sometimes follow the 4-day rotation of Venus at the cloudtop over a timescale of 2 hours, but disappear within 24 hours. In contrast, the HDO distribution is very uniform over the disk.

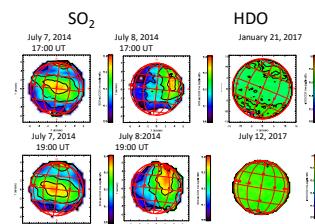


Figure 1: Examples of TEXES maps of SO₂ (left and middle) and HDO (right)

2. Long-term variations of SO₂ and H₂O

Figure 2 shows the variations of the disk-integrated mixing ratios of H₂O and SO₂ between January 2012 and September 2018. While the H₂O abundance shows a slow decrease by a factor of about 2 (from about 1 ppmv to 0.5 ppmv) between 2016 and 2018, the SO₂ abundance exhibits changes by as much as a factor 20, with a minimum of 30 ppbv in February 2014 and a maximum of 600 ppbv in July 2018.

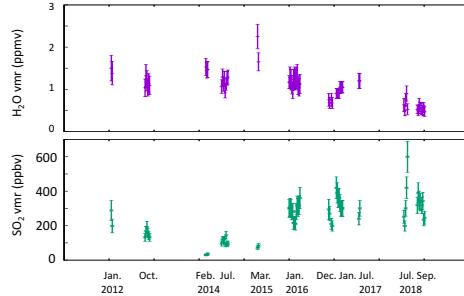


Figure 2: Long-term variations of the disk-integrated mixing ratios of H_2O (top) and SO_2 (bottom) measured by TEXES between 2012 and 2018.

3. Statistical analysis of the SO_2 plumes: comparison with space data

We have analyzed the behavior of the SO_2 plumes as a function of latitude, longitude and local time. This study has shown that they are mostly located around the equator, with a depletion around noon and two possible maxima around the terminators. More data will be needed to confirm the existence of a semi-diurnal wave. The depletion around noon is also observed in the SO_2 distribution retrieved in the UV by SPICAV/VEx [5] (Fig. 3); a very good agreement is also observed between the SO_2 measurements recorded by TEXES and the ones obtained in the UV by UVI/Akatsuki (Fig. 4). This comparison shows that the SO_2 measurements obtained in the thermal infrared can be used to complement, in the night side, the space data recorded in the UV on the dayside.

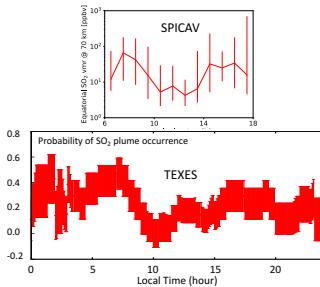


Figure 3: The SO_2 abundance recorded by SPICAV (top) and the probability of the SO_2 plume occurrence as measured by TEXES (bottom) as a function of local time.

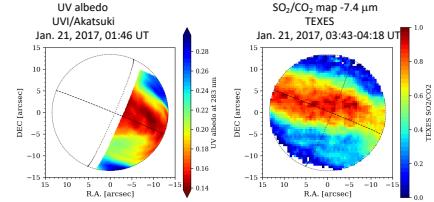


Figure 4: The SO_2 abundance measured in the UV by UVI/Akatsuki (left) and in the IR by TEXES (right)

4. Vertical distribution of SO_2

Simultaneous observations of TEXES at $7.4\text{ }\mu\text{m}$ and $19\text{ }\mu\text{m}$ have allowed us to probe SO_2 at two different levels, at the cloudtop and a few kilometers below within the clouds. In addition, the widths of the SO_2 lines, broader than the CO_2 lines, have allowed us to constrain the SO_2 vertical profile which shows a clear depletion above the cloudtop [2]. By combining the use of weak and strong CO_2 lines, we have shown that, in the polar collars, the morning terminator is colder than the evening one, showing evidence for a cold diurnal longitudinal wave [2]. In a forthcoming study, we are going to analyze the whole TEXES dataset at 7.4 and $19\text{ }\mu\text{m}$ to refine the vertical distribution of SO_2 as a function of latitude and local time.

Acknowledgements

T.E. and T.K.G. were visiting astronomers at the NASA Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. We wish to thank the IRTF staff for the support of the TEXES observations.

References

- [1] Encrenaz, T., Greathouse, T. K., Roe, H. et al. 2012, *A&A*, **543**, A153. [2] Encrenaz, T., Greathouse, T. K., Richter, M. J. et al. 2013, *A&A*, **559**, A65. [3] Encrenaz, Greathouse, T. K., Richter, M. J. et al. 2016, *A&A*, **595**, A74. [4] Encrenaz, T, Greathouse, T., Marcq, E. et al. 2019, *A&A*, **623**, A70. [5] E. Marcq, K. Jessup, L. Baggio et al., submitted to *Icarus* (2019).