

Paramagnetic-to-diamagnetic transition in dense liquid iron and its influence on electronic transport properties

Ronald Redmer (1), Jean-Alexander Korell (1), Martin French (1), Mandy Bethkenhagen (1) and Gerd Steinle-Neumann (2)
(1) Institute of Physics, University of Rostock, Rostock, Germany, (2) Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany

Abstract

The electronic transport properties of warm dense liquid iron are important properties for understanding the magnetic field generation in Earth-like and other solid planets. Here we investigate the electrical and thermal conductivity with spin-polarized simulations based on density functional theory over a significant pressure and temperature range using the Kubo-Greenwood formalism [1]. We find that a paramagnetic state is stable in the liquid up to high temperatures at ambient pressure. It is shown that the overestimation of results from exploding wire experiments by more than 30% that occurs in spin-degenerate simulations is reduced to 10% or less when spin polarization is taken into account. Direct comparisons between spin-polarized and spin-degenerate simulations reveal that the spin effects on the conductivities enter via changes in both ionic and electronic structure. Along the 3700 K isotherm, we explore the persistence of magnetic fluctuations toward high densities, and beyond 20-50 GPa the liquid becomes diamagnetic, which suggests the existence of a continuous paramagnetic-to-diamagnetic transition. This transition exerts a significant influence on the transport properties of liquid iron and is potentially of high relevance for dynamo processes in Mercury and Mars.

Acknowledgements

This work is supported by the DFG within the FOR 2440 “Matter under Planetary Interior Conditions - High Pressure, Planetary, and Plasma Physics.”

References

[1] Korell, J.-A., French, M., Steinle-Neumann, G., and Redmer, R.: Paramagnetic-to-Diamagnetic Transition in Dense Liquid Iron and its Influence on Electronic Transport Properties, *Phys. Rev. Lett.*, Vol. 122, 086601, 2019.