

Understanding the atmospheric chemistry of Venus from the surface to 110 km

Carver J. Bierson, Xi Zhang
University of California Santa Cruz, Santa Cruz, CA, USA (cthomas1@ucsc.edu)

Abstract

Venus is a natural laboratory to test our understanding of atmospheric sulfur chemistry. Previous chemical models of Venusian atmosphere have focused on either the lower or middle atmosphere. In this work we perform the first thorough analysis of an atmospheric chemistry model that extends from the surface to 110 km. We find that flux of species through the cloud deck (~40 km-70 km) can have a significant effect on the vertical profiles.

1. Introduction

Venus's atmosphere can be broadly divided into a lower and middle atmosphere that are separated by the clouds. Previous chemical modeling efforts have focused on understanding these parts of the atmosphere independent of one another. In this work we perform the first analysis of atmospheric chemistry from the surface to 112 km.

Venus Express and ground based observations have revealed stark differences in these regions. The lower atmosphere has observed abundances of SO₂ (~ 200 ppm), OCS (~ 10 ppm), and CO (~ 10 ppm). Many previous studies have tried to understand the chemical pathways between these species but as of yet their is no consensus [1, 2, 3].

In the middle atmosphere there are abundant observations of SO₂ which is highly depleted relative to the lower atmosphere and is highly temporally variable. In the middle atmosphere SO₂ also increases in mixing ratio with altitude, the so-called "SO₂ inversion" [4].

2. Our Model

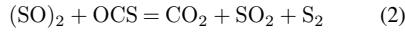
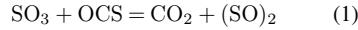
In this we extend the model of [5] to the surface of Venus. We have added the lower atmosphere reactions from [2]. All chemical reactions were also checked for

updates from the JPL kinetic chemistry database [6]. We tested multiple eddy diffusivity profiles including those from [2, 5, 7].

3. Results

3.1. SO₂

The SO₂ system was of particular interest for this work because of the wealth of observations. Previous lower and middle atmosphere models use boundary conditions that are inconsistent with one another. Lower atmosphere models consistently predicted SO₂ concentrations in the cloud level in excess of 100 ppm while middle atmosphere models (which begin in the clouds) would apply a lower boundary condition of < 10 ppm (See Table 1).



Table 1: Mixing ratio of SO₂ and the boundary of different lower and middle atmosphere models. Note that the model of Yung et al. [3] which uses a higher SO₂ concentration also produced an SO₂ profile inconsistent with observations.

Reference	Model Domain	SO ₂ (ppm)
Krasnopolsky [2]	0-47 km	130
Krasnopolsky [7]	47-112 km	9.7
Zhang et al. [5]	58-112 km	3.5
Yung et al. [3]	58-112 km	130

When coupling the lower and middle atmosphere we find the in the lower atmosphere SO₂ readily diffuses into the middle atmosphere. This leads to mixing ratios far in excess of the observations. This is due to the fact that SO₂ has an extremely long chemical lifetime in the lower atmosphere. SO₂ is also produced at the base of the cloud layer as H₂SO₄ from the clouds is thermally decomposed. All this suggests that there is some unknown sink of SO₂ in the cloud region or that SO₂ is inhibited from passing through the cloud region. Separating these possibilities will the focus of future work.

3.2. CO and OCS

In the lower atmosphere most models have focused on the relationship between CO and OCS. This is in part motivated by the observations that at the base of the clouds the OCS mixing ratio decreases rapidly while CO increases [8]. SO_3 has been suggested as to play a role in this conversion because this part of the lower atmosphere is uniquely high in SO_3 from the thermal decomposition of H_2SO_4 . Krasnopolsky and Pollack [1] proposed the pathway

This pathway relies on $(\text{SO})_2$. Previous lower atmosphere models however did not include $(\text{SO})_2 \rightleftharpoons \text{SO}$ equilibrium reactions. We find that when including this reaction, reaction 2 is effectively halted. From this we suggest that either OCS and CO are not chemically linked and are responding to independent forcing or a different mechanism is responsible. Future laboratory work could help identify chemical pathways between SO_3 , OCS, and CO.

4. Conclusions

This work is a first attempt to understand the chemical interactions between the lower and middle atmosphere of Venus. We find that some previously proposed chemical pathways break down when a more complete chemistry is included and new challenges arise. Going forward we will investigate the role the clouds themselves play in these chemical processes.

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. NSF DGE 1339067. X.Z. acknowledges support from NSF grant AST1740921.

References

- [1] Krasnopolsky, V., Pollack, J. B.: H₂O-H₂SO₄ System in Venus' Clouds and OCS, CO, and H₂SO₄ Profiles in Venus' Troposphere, *Icarus*, Vol. 109, pp. 58 - 78, 1994.
- [2] Krasnopolsky, V.: Chemical kinetic model for the lower atmosphere of Venus, *Icarus*, Vol. 191, pp. 25-37, 2007

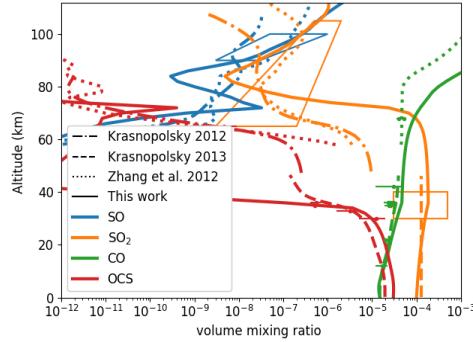


Figure 1: Comparison of our model results to previous models. Observed abundances are shown as points with error bars and boxed regions (which include variability and measurement errors). Because we cannot tune boundary conditions in the cloud layer our model does not match the observations as well as previous more focused models.

- [3] Yung, Y. et al.: Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus, *JGR: Planets*, Vol. 114, 2009.
- [4] Vandaele, A. C. et al.: Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability, *Icarus*, Vol. 295, pp. 16 - 33, 2017.
- [5] Zhang, X. et al.: Sulfur chemistry in the middle atmosphere of Venus, *Icarus*, Vol. 217, pp. 714–739, 2012.
- [6] Burkholder, J. B. et al.: Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 18, *JPL/NASA Report*, 2015.
- [7] Krasnopolsky, V.: A photochemical model for the Venus atmosphere at 47-112 km, *Icarus*, Vol. 218, pp. 230 - 246, 2012
- [8] Marcq, E. et al.: Composition and Chemistry of the Neutral Atmosphere of Venus, *Space Science Reviews*, Vol. 214, 2017.