

Towards the detection of the runaway greenhouse radius inflation effect

Martin Turbet (1), David Ehrenreich (1), Emeline Bolmont (1), Christophe Lovis (1) & Thomas Fauchez (2,3).

(1) Observatoire astronomique de l'Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland
(martin.turbet@unige.ch) ; (2) NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ; (3) Goddard Earth Sciences Technology and Research (GESTAR), Universities Space Research Association, Columbia, Maryland, USA.

1. Introduction

Planets similar to Earth – but slightly more irradiated – are expected to experience a runaway greenhouse transition, a state in which a net positive feedback between surface temperature, evaporation, and atmospheric opacity causes a runaway warming [1,2]. This runaway greenhouse positive feedback ceases only when oceans have completely boiled away, forming an optically thick H₂O-dominated atmosphere. Venus may have experienced a runaway greenhouse in the past [3,4], and we expect that Earth will in around 600 million years as solar luminosity increases by $\sim 6\%$ only compared to its present-day value [5]. However, the exact limit at which this extreme, rapid climate transition from a temperate climate (with most water condensed on the surface) to a post-runaway greenhouse climate (with all water in the atmosphere) would occur, and whether or not a CO₂ atmospheric level increase would affect that limit, is still a highly debated topic [6,7,8,9]. This runaway greenhouse limit is traditionally used to define the inner edge of the Habitable Zone [10,11].

Here we take advantage of this runaway greenhouse process to propose a new, innovative observational test of the Habitable Zone concept, that could also be used to diagnose the presence of water in temperate, Earth-size exoplanets.

2. Method

We first use the 1-D 'inverse' radiative-convective version of the LMD Generic model to simulate a post-runaway greenhouse planetary atmosphere, following the same approach as in [4,11,12]. The atmosphere is decomposed into 200 logarithmically-spaced layers that extend from the ground to the top of the atmosphere arbitrarily fixed

at 0.1 Pascal. The atmosphere, assumed here to be composed of 1 bar of N₂ and a variable amount of H₂O, is divided in at most three physical layers (a dry convective layer, a moist convective layer, and an isothermal stratospheric layer) constructed as in [13,14,15].

We then compute the high resolution wavelength dependent transit depth of the post-runaway greenhouse, steam atmosphere using the line by line radiative transfer model PUMAS, integrated in the Planetary Spectrum Generator [16], for both cloud-free and cloudy atmospheres.

3. Results

Our main finding is that as an Earth-like planet experiences a runaway greenhouse transition, the apparent thickness of its atmosphere evolves from a few tens of kilometers [17,18] to possibly as high as over a thousand kilometers (i.e., a few tens of % of Earth radius), depending on the initial water content of the planet. We call this phenomenon the *runaway greenhouse radius inflation effect* [19].

This abrupt radius inflation – resulting from the runaway-greenhouse-induced transition – should produce a strong density change that could be detected statistically by ongoing and upcoming space missions such as TESS, CHEOPS and PLATO (combined with precise radial velocity mass measurements with ground-based spectrographs such as ESPRESSO, CARMENES or SPIRou).

It could also be detected in particular cases in multiplanetary systems such as TRAPPIST-1 (when masses and radii will be known with good enough precision). To explore this possibility, we carried out an analysis coupling simplified interior models with

our 1-D radiative-convective model taking into account the runaway greenhouse radius inflation effect. The result of this exploration – which suggests a possible detection of the runaway greenhouse radius inflation effect within the TRAPPIST-1 system – will be presented in details at the EPSC-DPS Joint Meeting 2019.

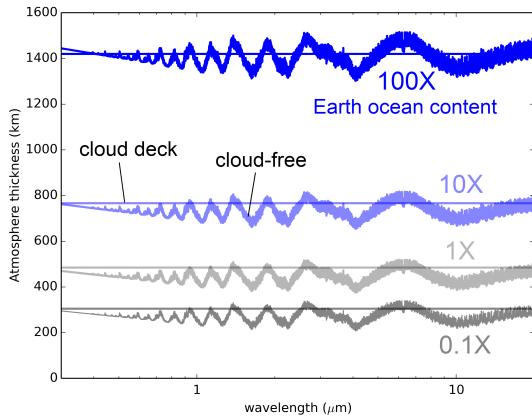


Figure 1 – Transit atmospheric thickness of a post-runaway greenhouse planetary atmosphere as a function of wavelength (from 0.3 to 20 μm), and for different total water content (from 0.1 to 100 \times the Earth ocean content). Atmospheric thickness is plotted for cloudy (horizontal lines) and cloud-free scenarios, for comparison.

References

- [1] Ingersoll, A. P. 1969, Journal of Atmospheric Sciences, 26, 1191.
- [2] Goldblatt, C. & Watson, A. J. 2012, Philosophical Transactions of the Royal Society of London Series A, 370, 4197.
- [3] Rasool, S. I. & de Bergh, C. 1970, Nature, 226, 1037.
- [4] Kasting, J. F., Pollack, J. B., & Ackerman, T. P. 1984, Icarus, 57, 335.
- [5] Gough, D. O. 1981, Solar Phys., 74, 21.
- [6] Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. 2013, Nature, 504, 268.
- [7] Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. 2013, Nature Geoscience, 6, 661.
- [8] Ramirez, R. M., Kopparapu, R. K., Lindner, V., & Kasting, J. F. 2014, Astrobiology, 14, 714.
- [9] Popp, M., Schmidt, H., & Marotzke, J. 2016, Nature Communications, 7, 10627.
- [10] Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108.
- [11] Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, The Astrophysical Journal, 765, 131.
- [12] Turbet, M., Gillmann, C., Forget, F., et al. 2019, arXiv e-prints [arXiv:1902.07666].
- [13] Marcq, E. 2012, Journal of Geophysical Research (Planets), 117, E01001.
- [14] Marcq, E., Salvador, A., Massol, H., & Davaille, A. 2017, Journal of Geophysical Research (Planets), 122, 1539.
- [15] Pluriel, W., Marcq, E., & Turbet, M. 2019, Icarus, 317, 583.
- [16] Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. 2018, Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 86.
- [17] Ehrenreich, D., Tinetti, G., Lecavelier Des Etangs, A., Vidal-Madjar, A., & Selsis, F. 2006, Astronomy and Astrophysics, 448, 379.
- [18] Kaltenegger, L. & Traub, W. A. 2009, The Astrophysical Journal, 698, 519.
- [19] Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E., & Fauchez, F. 2019, in revision for a publication in Astronomy & Astrophysics letters.