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Abstract
The extreme low density of material and degree of
orbital excitation in the modern asteroid belt starkly
contrasts that of the planetary regimes, and implies a
unique evolutionary history [1]. Because many ob-
jects in the belt are thought to represent the unpro-
cessed building blocks of planet formation, under-
standing its dynamical history is supremely important.
While modern terrestrial accretion models broadly re-
produce the belt’s primordial depletion [2] and orbital
excitation (for example; [3]), all previous studies fail
to reproduce the inner (a <2.5 au) belt’s inclination
structure (eg; [4, 3, 2]). We use a modernized com-
putational algorithm (GPU (graphics processing unit)
accelerated; [5]) to accurately model the final phase of
Saturn’s orbital migration. We find that the inclination
problem is consistently resolved when the precise dy-
namics of the Jupiter-Saturn system’s approach to its
modern configuration is accounted for.

1. Introduction
The giant planet instability (the so-called Nice Mode;
[6]) excites orbits in the asteroid belt via eccentric
forcing (eg: secular perturbations). Furthermore, the
violent sweeping of strong secular resonances across
the belt should account for either some [3] or all [2] of
the mass discrepancy between the modern and primor-
dial belt (some ∼4 orders of magnitude; [7]). How-
ever, simulations of the event [4, 3, 2] consistently fail
to reproduce the ratio of asteroids with inclinations
above to those below the ν6 secular resonance in the
inner belt (∼0.08 in the modern solar system). Specif-
ically, the sweeping of the ν6 and ν16 resonances dur-
ing the giant planet instability excite and strand aster-
oids on stable, high inclination orbits that are not ob-
served in the modern belt. In fact, most previous stud-
ies report ratios of asteroids about ν6 that are greater

than unity.

2. Dynamical Mechanism
We argue that the absence of asteroids (figure 1) with
orbits that precess between 24-28 ”/yr (arc-seconds per
year) is related to the inclination distribution problem;
and a remnant of the final phase of Saturn’s orbital mi-
gration. Encounters with leftover planetesimals cause
Saturn’s orbit to diverge from Jupiter’s. Through this
process, the two planets’ mutual interactions weaken,
and Saturn’s orbital precession slows. In the modern
solar system, Saturn’s precession is related to the g6
eigenfrequency of 28.22 ”/yr that, in turn, drive the
ν6 resonance. However, because of the Jupiter-Saturn
system’s modern proximity to the 5:2 mean motion
resonance, the g6 rate must have dipped below the
modern value before eventually rising back up (figure
2). This is a result of secular effects amplifying near
mean motion resonance (see discussion in [8]).
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Figure 1: Orbital precession rates in the modern aster-
oid belt.
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Figure 2: The solar system’s g6 eigenfrequency as a
function of the Jupiter-Saturn period ratio.

3. Summary and Conclusions
We present numerical simulations to show that this
cycling of the g6 rate dramatically alters the asteroid
belt’s inclination structure. Our initial populations of
asteroids are drawn from the results of terrestrial ac-
cretion models [2]. The sweeping of ν6 in our sim-
ulations excites the eccentricities of moderate incli-
nation (∼10< i <25◦) asteroids and places them on
planet-crossing orbits. These asteroids are then re-
moved, yielding final asteroid belts in good agreement
with the real one. The median ratio of asteroids above
to below ν6 in our systems is ∼0.5, with some system
possessing ratios near zero. Thus, our work offers a
self-consistent explanation for the inner asteroid belt’s
inclination distribution.
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