

Constraining Saturn's Final Migration with GPU Acceleration

Matthew Clement (1,2), Alessandro Morbidelli (3), Sean Raymond (4) and Nathan Kaib (1)

(1) HL Dodge Department of Physics Astronomy, University of Oklahoma, Norman, OK 73019, (2) Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, (3) Observatoire de la Cte d'Azur, BP 4229, 06304 Nice Cedex 4, France, (4) Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, alle Geoffroy Saint- Hilaire, 33615 Pessac, France 20015, USA (mattclement88@gmail.com)

Abstract

The extreme low density of material and degree of orbital excitation in the modern asteroid belt starkly contrasts that of the planetary regimes, and implies a unique evolutionary history [1]. Because many objects in the belt are thought to represent the unprocessed building blocks of planet formation, understanding its dynamical history is supremely important. While modern terrestrial accretion models broadly reproduce the belt's primordial depletion [2] and orbital excitation (for example; [3]), all previous studies fail to reproduce the inner ($a < 2.5$ au) belt's inclination structure (eg; [4, 3, 2]). We use a modernized computational algorithm (GPU (graphics processing unit) accelerated; [5]) to accurately model the final phase of Saturn's orbital migration. We find that the inclination problem is consistently resolved when the precise dynamics of the Jupiter-Saturn system's approach to its modern configuration is accounted for.

1. Introduction

The giant planet instability (the so-called Nice Mode; [6]) excites orbits in the asteroid belt via eccentric forcing (eg: secular perturbations). Furthermore, the violent sweeping of strong secular resonances across the belt should account for either some [3] or all [2] of the mass discrepancy between the modern and primordial belt (some ~ 4 orders of magnitude; [7]). However, simulations of the event [4, 3, 2] consistently fail to reproduce the ratio of asteroids with inclinations above to those below the ν_6 secular resonance in the inner belt (~ 0.08 in the modern solar system). Specifically, the sweeping of the ν_6 and ν_{16} resonances during the giant planet instability excite and strand asteroids on stable, high inclination orbits that are not observed in the modern belt. In fact, most previous studies report ratios of asteroids about ν_6 that are greater

than unity.

2. Dynamical Mechanism

We argue that the absence of asteroids (figure 1) with orbits that precess between 24–28 $''/\text{yr}$ (arc-seconds per year) is related to the inclination distribution problem; and a remnant of the final phase of Saturn's orbital migration. Encounters with leftover planetesimals cause Saturn's orbit to diverge from Jupiter's. Through this process, the two planets' mutual interactions weaken, and Saturn's orbital precession slows. In the modern solar system, Saturn's precession is related to the g_6 eigenfrequency of 28.22 $''/\text{yr}$ that, in turn, drive the ν_6 resonance. However, because of the Jupiter-Saturn system's modern proximity to the 5:2 mean motion resonance, the g_6 rate must have dipped below the modern value before eventually rising back up (figure 2). This is a result of secular effects amplifying near mean motion resonance (see discussion in [8]).

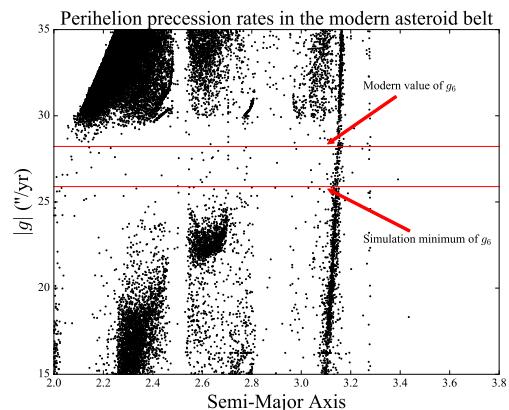


Figure 1: Orbital precession rates in the modern asteroid belt.

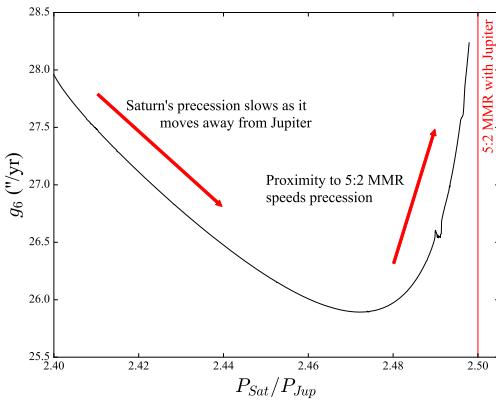


Figure 2: The solar system’s g_6 eigenfrequency as a function of the Jupiter-Saturn period ratio.

3. Summary and Conclusions

We present numerical simulations to show that this cycling of the g_6 rate dramatically alters the asteroid belt’s inclination structure. Our initial populations of asteroids are drawn from the results of terrestrial accretion models [2]. The sweeping of ν_6 in our simulations excites the eccentricities of moderate inclination ($\sim 10^\circ < i < 25^\circ$) asteroids and places them on planet-crossing orbits. These asteroids are then removed, yielding final asteroid belts in good agreement with the real one. The median ratio of asteroids above to below ν_6 in our systems is ~ 0.5 , with some system possessing ratios near zero. Thus, our work offers a self-consistent explanation for the inner asteroid belt’s inclination distribution.

Acknowledgements

This material is based upon research supported by the Chateaubriand Fellowship of the Office for Science and Technology of the Embassy of France in the United States. M.S.C. and N.A.K. thank the National Science Foundation for support under award AST-1615975. S.N.R. acknowledges NASA Astrobiology Institute’s Virtual Planetary Laboratory Lead Team, funded via the NASA Astrobiology Institute under solicitation NNH12ZDA002C and cooperative agreement no. NNA13AA93A. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the Uni-

versity of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

References

- [1] F. E. DeMeo and B. Carry. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. *Icarus*, 226:723–741, September 2013.
- [2] M. S. Clement, S. N. Raymond, and N. A. Kaib. Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario. *AJ*, 157:38, January 2019.
- [3] R. Deienno, A. Izidoro, A. Morbidelli, R. S. Gomes, D. Nesvorný, and S. N. Raymond. Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. *ApJ*, 864:50, September 2018.
- [4] K. J. Walsh and A. Morbidelli. The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. *A&A*, 526:A126, February 2011.
- [5] S. L. Grimm and J. G. Stadel. The GENGA Code: Gravitational Encounters in N-body Simulations with GPU Acceleration. *ApJ*, 796:23, November 2014.
- [6] K. Tsiganis, R. Gomes, A. Morbidelli, and H. F. Levison. Origin of the orbital architecture of the giant planets of the Solar System. *Nature*, 435:459–461, May 2005.
- [7] B. Bitsch, A. Johansen, M. Lambrechts, and A. Morbidelli. The structure of protoplanetary discs around evolving young stars. *A&A*, 575:A28, March 2015.
- [8] A. Morbidelli and J. Henrard. Secular resonances in the asteroid belt - Theoretical perturbation approach and the problem of their location. *Celestial Mechanics and Dynamical Astronomy*, 51:131–167, June 1991.