

Determination of $^{14}\text{N}/^{15}\text{N}$ of CH_3CN in Titan's atmosphere with ALMA

Takahiro Iino (1), Hideo Sagawa (2) and Takashi Tsukagoshi (3)

(1) The University of Tokyo, Tokyo, Japan (iino@nagoya-u.jp), (2) Kyoto Sangyo University, Kyoto, Japan, (3) National Astronomical Observatory of Japan, Tokyo, Japan

Abstract

We have successfully detected rotational transitions of gaseous Acetonitrile molecule $\text{CH}_3\text{C}^{15}\text{N}$ ($J = 19–18$) locate at 338.88 – 338.92 GHz along with its isotopologue CH_3CN ($J = 18–17$) at 330.75 – 330.95 GHz in Titan atmosphere by analysing ALMA archival data. Spatial resolution was larger than Titan's disk, so we obtained the disk-averaged spectra of both isotopologues. The observation was carried out in April 2015. Since it is known that $^{14}\text{N}/^{15}\text{N}$ in Titan's nitriles such as N_2 , HCN and HC_3N show large variations, isotopic fractionation processes induced by the atmospheric chemistry have been expected in Titan's atmosphere. A new determination of $^{14}\text{N}/^{15}\text{N}$ in CH_3CN may present a new information on the fractionation processes.

1. Introduction

Titan has a thick N_2 atmosphere with CH_4 and other various nitriles and hydrocarbons (i.e., organic gases), which makes this moon very unique in our solar system. The presence of the complex organic species raises a fundamental question of how such an atmosphere has evolved over Titan's history.

Among many observational methods, a spectroscopic determination of nitrogen isotopic ratio $^{14}\text{N}/^{15}\text{N}$ gives us essential information in terms of the atmospheric chemistry because nitrogen is easily fractionated with respect to the chemical reaction processes.

Recently, a new theoretical study [1] has highlighted a more critical importance of $^{14}\text{N}/^{15}\text{N}$ in some nitrogen-bearing species. It predicted that the production process of CH_3CN is sensitive to the Galactic Cosmic Rays (GCR) influx, whereas other major nitriles such as HCN and HC_3N are rather sensitive to the magnetospheric electrons.

Previously measured $^{14}\text{N}/^{15}\text{N}$ values in HCN and

HC_3N are in a range of ~ 56 – 94 (HCN, e.g., [2][3][4]) and 67 ± 14 (HC_3N , [5]), which is in good agreement with the theoretical result by [1]. In turn, CH_3CN is proposed to exhibit a higher $^{14}\text{N}/^{15}\text{N}$ value of ~ 120 at a 200 km altitude because of GCR induced fractionation by the same theoretical calculations. A precise measurement of $^{14}\text{N}/^{15}\text{N}$ in CH_3CN could give an effective constraint on the role of GCR induced fractionation process for changing Titan's atmospheric environment. There has been no dedicated observation of $\text{CH}_3\text{C}^{15}\text{N}$ so far, and therefore, we are to reveal the production process of CH_3CN molecules by a new determination of its $^{14}\text{N}/^{15}\text{N}$ value.

2 Analysis of ALMA archival data

We searched all the public-released Titan data (including the calibrator-purpose data) in the ALMA science archive, and found one data set (2013.1.00033.S) which contains both $\text{CH}_3\text{C}^{15}\text{N}$ ($J = 19–18$) and CH_3CN ($J = 18–17$) spectra taken quasi-simultaneously. It is noted that (quasi-)simultaneous data acquisition of CH_3CN and $\text{CH}_3\text{C}^{15}\text{N}$ is necessary to avoid a potential error due to strong seasonal variation of CH_3CN abundance.

Observations were carried out in April 2015. Synthesized beam size of $\text{CH}_3\text{C}^{15}\text{N}$ and CH_3CN observations were 1.19×0.62 arcsec and 1.08×0.8 arcsec, respectively. Figure 1 shows disk-averaged spectra of CH_3CN (top panel) and $\text{CH}_3\text{C}^{15}\text{N}$ (bottom panel). Both isotopologues were detected with relatively high S/N even for $\text{CH}_3\text{C}^{15}\text{N}$.

We analyzed $\text{CH}_3\text{CN}/\text{CH}_3\text{C}^{15}\text{N}$ using these data by means of radiative transfer modeling of the Titan atmosphere. The model used in this study is that of used for analysis of previous *Herschel* observations [6]. A vertical profile of CH_3CN was retrieved for a disk-averaged measurement spectrum (Figure 2). As

the temperature profile and a priori profile of CH_3CN , a result presented by a previous ALMA [7] and IRAM [2] observations were employed, respectively.

3 Results

As shown in an upper panel of Figure 1, we succeeded to fit the observed CH_3CN spectrum with our modeled one within the measurement noise range. Assuming the obtained CH_3CN vertical profile, we attempted to fit the $\text{CH}_3\text{C}^{15}\text{N}$ spectrum by scaling the CH_3CN abundance. A red line in bottom panel of Figure 1 indicates the best-fit spectrum of $\text{CH}_3\text{C}^{15}\text{N}$. As the initial result, the obtained $^{14}\text{N}/^{15}\text{N}$ value roughly agrees with that of measured in HCN and HC_3N .

4. Figures

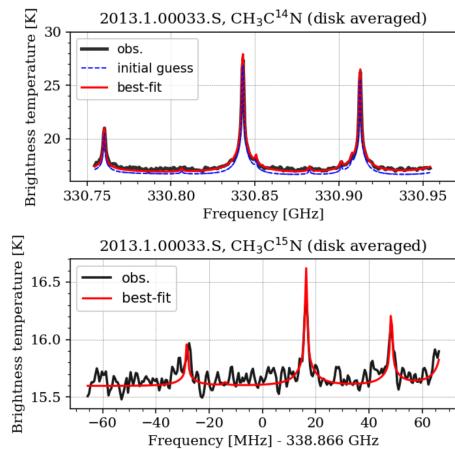


Figure 1: top: Observed (black), modeled with a priori profile (blue), and the best-fit spectra of CH_3CN . bottom: Observed (black) and modeled (red) spectra of $\text{CH}_3\text{C}^{15}\text{N}$.

Acknowledgements

This presentation makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00033.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI

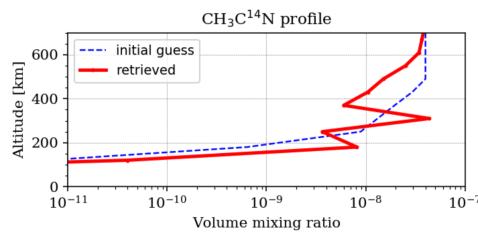


Figure 2: A test retrieval of CH_3CN vertical profile from the disk-averaged spectrum. A priori (blue) and retrieved (red, preliminary result) profiles are shown.

(Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

References

- [1] Dobrijevic & Loison (2018), Icarus, 307, 371.
- [2] Marten et al. (2002), Icarus, 158, 532.
- [3] Gurwell et al. (2004), ApJ, 616, L7.
- [4] Molter et al. (2016), AJ, 152, 42.
- [5] Cordiner et al. (2018), ApJ, 859, L1.
- [6] Rengel et al. (2013), A&A, 561, A4.
- [7] Thelen et al. (2019), Icarus, 319, 417.