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Abstract

The discovery of thousands of exoplanets with a huge
range of masses, sizes, and orbits has extended the
horizon of the planetary exploration. The atmospheres
of short-period gaseous planets, Jupiter- and Neptune-
size, are being observed and characterized. The emis-
sion and transmission spectra have revealed molecular
absorption of H2O, CO, CHy4, CO,, TiO and VO and
in some cases the presence of clouds and hazes in the
atmosphere. The transit technique has provided most
of the current results as it benefits more if the target
planets is close to their parent stars. However, these
planets show a different environment compared to the
planets in the Solar System planets due to higher irra-
diation received. The high-contrast imaging technique
is meant to provide insights into those planets orbiting
far away from their host star (distance 1 AU) so that
their atmospheric temperature is low enough to show
different chemical and dynamical behaviour (e.g. con-
densation mechanism, cold trap, etc.). In this work, we
present a novel model to synthesize the wavelength’s
dependence of the albedo of a gaseous planetary atmo-
sphere. This algorithm is used as forwarding model for
inverse retrieval processes on reflected light spectra.
These contain rich information on the molecular com-
position, and cloud formation processes of exoplanet
atmospheres.

1. Introduction

The high-contrast imaging technique is meant to pro-
vide insights into those planets orbiting far away from
their host star (distance 1 AU) so that their atmospheric
temperature is low enough to show different chemical
and dynamical behaviour (e.g. condensation mech-
anism, cold trap, etc.). This technique has proven
to be successful in studying forming young Jupiter-
size planet [1, 2, 3]. Possible future direct-imaging
exoplanet space mission, e.g. Wide-Field InfraRed
Survey Telescope (WFIRST, [4, 5]), Habitable Exo-

planet Imaging Mission (HabEx, [6]) and Large Ultra-
Violet/Optical/InfraRed Surveyor (LUVOIR, [7]) will
observe through high-contrast imaging the starlight
reflected by exoplanets unveiling their atmospheric
structure. Rayleigh scattering, molecular absorption,
and scattering and absorption by atmospheric conden-
sates determine the reflection spectra of gaseous exo-
planets [8, 9]. Whether there exist clouds is the pri-
mary factor that controls the appearance of an exo-
planet. Depending on the atmospheric temperature, an
exoplanet may or may not have clouds [10, 11]. As-
suming an atmospheric elemental abundance the same
as the Sun, giant exoplanets may have ammonia, water
or silicate clouds in their atmospheres depending on
the orbital distance from their parent stars [12, 13, 14].
The radiative properties of the clouds are sensitive to
the vertical extent and density of the cloudy layer and
the sizes of cloud particles [15]. The elemental abun-
dance of the atmosphere also affects the formation of
the clouds [16]. As such, reflected light spectra of ex-
oplanets contain rich information on the composition,
and dynamic processes of exoplanetary atmosphere.

2. Model

The focus of the presented work is on cold gaseous
planets. We have developed a simplified calculation
of the cloud top pressure on gaseous exoplanets Hs-
dominated atmospheres and have equilibrium temper-
atures between 100 and 300 K. The model is an ex-
tension of the classical equilibrium cloud model that
has successfully predicted the bulk cloud structure of
Jupiter [17, 18]. The model considers water and am-
monia as potential condensible species, it calculates
the particle size to determine the radiative properties of
clouds, it includes the cloud feedback on the adiabatic
lapse rate and the albedo of the planet. We assume
water, methane, and ammonia are always the domi-
nant carrier for oxygen, carbon, and nitrogen. This as-
sumption is valid for the planets of consideration (i.e.
cold Jupiter and Neptune-sized planets having atmo-



spheres mainly composed of hydrogen and helium).
The hydrogen dominance and low temperatures of the
atmosphere ensure these elements on their most hy-
drogenated forms [19, 20]. The model takes the posi-
tion and basic physical information of water and am-
monia clouds to compute the density, and the particle
size of these clouds as well as a T-P profile consistent
with the lapse rate equation. This algorithm is used as
forward model for the Bayesian sampler nested sam-
pling [21, 22] and its implementation MultiNest [23]
to perform inverse retrieval processes on reflected light
spectra.

3. The parameters space

As aforementioned (see Sec. 2) we consider water and
ammonia to be the species that condensate in the at-
mosphere. For each of the two molecules, we chose
four parameters that fully characterize the position and
chemical properties of the respective cloud form. The
P;,p indicates the top position of the cloud and Dy
accounts for the vertical extension of the cloud. Then
the Volume Mizing Ratio (V M R) is the molecule
per volume unit that can be found below the cloud
layer, and finally the Condensation Ratio (CR) in-
dicates the ratio between the VMR of the considered
molecule on top of the cloud layer and the VMR below
the cloud, this will allow the calculation of the density
of the cloud and its optical properties (see e.g. Fig. 1).

Aside from these four parameters, we also included
the VMR of methane and the planetary gravity g.
When all the parameters are fitted we have a model
with 10 free parameters, otherwise, when only one of
the species between HoO or NHj3 is considered to con-
densate we use a model with 7 free parameters (the
VMR of the two molecules is always a free parame-
ter).

Previous works on the topic (e.g. [24, 25]) were
designed to retrieve optical properties (optical depth,
scattering, albedo, and asymmetry factor) and cloud
depth as model parameters, but not linking them to a
physical model of cloud composition (such as parti-
cle size, cloud density and cloud spectral information).
The clouds composition and their structure are instead
the core of our model.

4. Result

By using this model to perform a Bayesian inverse re-
trieval process on a cold gaseous reflection light spec-
trum, we have been able to determine cloud structure

and main chemical composition (Fig. 2). In particu-
lar, the methane abundance is retrieved without show-
ing any significant correlations with other parameters.
From the retrieved gravity we are able to infer also
the radius of the planet. Moreover, we are able to
characterize water and ammonia clouds in the atmo-
sphere; in particular, the density, the optical depth and
the particle size are parameters derived from the re-
trieved VMR vertical profile of HoO or NHg (see e.g.
Fig. 1).

Molecular condensation

10
10°
T
e
o S O S
g e
] S
o \
< T S
107
—— H20 VMR profile H0 cloud NH; cloud
10° NH3 VMR profile extension extension
10711 10710 107 1078 1077 1076 1075 1074 1073

Volume Mixing Ratio

Figure 1: VMR H20 and NHj; vertical profile. The
VMR of the two molecules decreases when they pass
into the condensate form. This is highlighted with
dashed lines.
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Figure 2: Simulated reflection spectrum in the optical
wavelength. The data is a simulation for the planet ups
And-e. The best fit model has been calculated by using
the Bayesian sampler MultiNest.
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