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Abstract

The New Horizons mission has returned hyperspectral
data for Pluto’s surface consisting of complex, not di-
rectly modelisable spectra. A radiative transfer model
that accurately represents the complexity of the puta-
tive surface structure and mix of components poses a
high-dimensional inverse problem, with 50-60 inde-
pendent variables. We develop an efficient resolution
method using progressive metaheuristics, and present
the most accurate quantitative data on Pluto’s surface
composition to date.

1 Background

Since arriving at Pluto in 2015, New Horizons has sent
back vast quantities of data, including high-resolution
hyperspectral cubes from the LEISA instrument. Data
reduction and PCA has allowed us to identify the ma-
jor types of surface material and to qualitatively map
their composition [1]. These types of material can in-
teract in multiple ways, including molecular, granular
and areal mixing as well as vertical stratification (Fig.
1). A first quantitative map based on a pixel-by-pixel
model inversion has also been created, but the model
used is simplified, only taking into account sub-pixel
areal mixing [2].
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Figure 1: Schematic representation of the various materials
present on Pluto and their possible mixing states [1]

2 Methods

We are working with multiple radiative transfer mod-
els (RTMs) to accurately represent the potential com-
plexity of Pluto’s surface. This representation brings
into play a multitude of independent free parameters,
such as the surface components’ grain size, porosity,
proportions, and anisotropic factor. The result is a
high-dimensional inversion problem that resists con-
ventional solving via exhaustive calculation of a spec-
tral library or via simple algorithms such as gradient
descent.

A promising path towards the resolution of this
problem lies through metaheuristics, a class of higher-
level optimisation strategies that sample from a large
set of solutions to find a sufficiently good global so-
lution. In particular, simulated annealing is a method
that combines gradient descent with stochastic pertur-
bations to escape local minima (see Fig 2 for applica-
tion to simulating spectra).
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Figure 2: Flowchart showing an application of simulated
annealing to optimising the fit of a synthetic spectrum.
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Our application of simulated annealing integrates a
stochastic ranking of the parameters by magnitude of
effect: the progressive addition of parameters to the
model in order of decreasing importance allows us to
more efficiently search the complex or "rugged" pa-
rameter space. The method’s validation via synthetic
spectra has obtained excellent accuracy (convergence
to RMSE<0.25% in under 20000 iterations).



3 Preliminary results

We are presenting quantitative spectral fits for several
compositional endmembers — locations on Pluto’s
surface with relatively pure compositions — as well
as first results for more complex terrains that consist
of two or more components. We will discuss the im-
plications of these fits as regards Pluto’s geology and
topography during the congress, as well as present
methodology for eventual pixel-by-pixel mapping and
segmentation of the entire surface.

-~ Target spectrum
—— Fiton band 1 (RMSE=1.65%)

{"*, —— Fiton band 2 (RMSE=1.73%)

., — Fiton band 3 (RMSE=1.52%)

0.8

0.6 1

Reflectance factor

0.4 4

0.2 4

0.0 4

12 14 1% 18 20 22 24
Wavelength (um)

Figure 3: Example of synthetic spectra fitted to real
Pluto spectrum representing the typical North pole ter-
rain
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