

Metal-silicate partitioning of Mo and W in Earth's mantle during core formation

Eleanor Jennings (1,2), David C. Rubie (1), **Seth A. Jacobson** (1,3,4), Alessandro Morbidelli (3), Yoichi Nakajima (1,5), Antje K. Vogel (1,6), Lesley A. Rose-Weston (1,7), and Dan Frost (1)
(1) Bayerisches Geoinstitut, University of Bayreuth, Bayreuth Germany, (2) University of London, Birkbeck, United Kingdom (e.jennings@bbk.ac.uk), (3) Observatoire de la Côte d'Azur, Nice, France, (4) Northwestern University, Evanston, IL, USA, (5) Kumamoto University, Kumamoto, Japan, (6) Lava-Dome, Deutsches Vulkanmuseum, Mendig, Germany, (7) Fladgate Exploration Consulting Corp, Thunder Bay, Ontario, Canada

Abstract

We are able to reproduce the W and Mo mantle abundances in an astrophysical-geological model of terrestrial planet accretion and core formation using a new parameterization of metal-silicate partitioning developed from new and published high pressure laboratory experiments. We find that this is only possible when Earth's mantle grows carbon-enriched and sulfur-depleted. Ultimately, the model produces simulated Earth-like planets matching 17 elemental mantle abundances including S, C, Mo, and W.

1. Introduction

The moderately siderophile elements molybdenum and tungsten are important constraints on the processes of accretion and core formation during Earth's earliest history. In particular, the details of tungsten partitioning between mantle and core determine the final radiogenic ^{182}W anomaly generated by the ^{182}Hf - ^{182}W radioactive decay system, which has been used to infer the history of Earth's core formation since the 1990s [1]. The partitioning of both W and Mo have been the focus of a number of previous experimental investigations [2-16], however these studies have produced varying and inconsistent models, thereby making extrapolations to realistic mantle-silicate equilibration conditions difficult. The liquid-liquid metal-silicate partition coefficients D_{Mo} and D_{W} have variously been suggested to depend on pressure, temperature, silicate and metal compositions. Indeed, the high cationic charges of W and Mo in silicate melts make their partition coefficients particularly sensitive to oxygen fugacity.

2. High pressure laboratory metal-silicate partitioning experiments

We combined 48 new high pressure and temperature experimental results with a comprehensive database of

previous partitioning experiments [2-16] to re-examine the systematics of Mo and W partitioning. From this database, we selected 68 Mo and 57 W experiments with pyrolite-like silicate compositions because Mo has a 4+ and W has a 6+ oxidation state in terrestrial magma ocean conditions and their partitioning is sensitive to silicate and metallic melt compositions. Fitting to the selected data, we present a new partitioning model in the form of a parameterized activity-corrected observed concentration ratio [5]:

$$\log_{10} K = a + b \frac{1}{T} + c \frac{P}{T} \quad (1)$$

We find that Mo becomes more siderophile with increasing temperature but less siderophile with pressure such that the fitting parameters are $a = 1.47 \pm 0.44$, $b = -1448 \pm 851$, and $c = -67.1 \pm 20.9$. We also find that W becomes more siderophile with increasing temperature but has no resolvable dependence on pressure such that the fitting parameters are $a = 0.61 \pm 0.28$ and $b = -4091 \pm 670$. Both W and Mo become more siderophile with increasing C content of the metal: we therefore performed experiments with varying C concentrations and fit epsilon interaction parameters $\varepsilon_{\text{C}}^{\text{Mo}} = -7.03 \pm 0.30$ and $\varepsilon_{\text{C}}^{\text{W}} = -7.38 \pm 0.57$.

3. Numerical planetary accretion and core formation simulations

W and Mo along with C (which is assumed to have $D_{\text{C}} = 1000$, but the results are insensitive to this choice), are incorporated into a combined N-body accretion and differentiation model, which already includes the major rock-forming elements as well as moderately and highly siderophile elements and sulphur [17-18]. In this model, oxidation and volatility gradients extend through the protoplanetary disk so that Earth accretes heterogeneously. These gradients as well as the equilibration pressure (temperature is assumed to lie along the peridotite melting curve) are fitted using a

least squares optimisation so that the model Earth-like planet reproduces the composition of the Bulk Silicate Earth (BSE) across 17 simulated element concentrations (Mg, Fe, Si, Ni, Co, Nb, Ta, V, Cr, S, Pt, Pd, Ru, Ir, W, Mo, and C). We also included the interaction parameters of W and Mo with Si, S, O, and C in the model.

Across six separate terrestrial planet formation simulations, we discovered that W and Mo require the early accreting Earth to be sulphur-depleted and carbon-enriched so that W and Mo are efficiently partitioned into Earth's core and do not accumulate in the mantle. If this is the case, the produced Earth-like planets possess mantle compositions matching the BSE across all simulated elements. However, there are two distinct estimates of the mantle's C abundance: ~70 ppm [19] and ~770 ppm [20], and all six models are consistent with the higher [20] estimated carbon abundance.

Acknowledgements

We acknowledge financial support from the European Research Council (ERC) Advanced Grant "ACCRETE" (Contract No. 290568) and the German Science Foundation (DFG) Priority Programme SPP1833 "Building a Habitable Earth" (RU 1323/10-1) and SPP1385 "The First 10 Million Years of the Solar System – a Planetary Materials Approach" (RU 1323/2).

References

- [1] Lee, D.-C., and Halliday, A. N.: Hafnium-tungsten chronometry and the timing of terrestrial core formation, *Nature*, 378, 771-4, 1995.
- [2] Hillgren, V. J., Drake, M. J., and Rubie, D. C.: High pressure and high temperature metal-silicate partitioning of siderophile elements: The importance of silicate liquid composition, *J. Anal. At. Spectrom.*, 4, 1363-8, 1996.
- [3] Jana, D., and Walker, D.: The impact of carbon on element distribution during core formation, *Geochim. Cosmochim. Acta*, 150, 463-72, 1997.
- [4] Kilburn, M. R., Wood, B. J.: Metal-silicate partitioning and the incompatibility of S and Si during core formation, *Earth Planet. Sci. Lett.*, 152, 139-48, 1997.
- [5] Righter, K., Drake, M. J., and Yaxley, G.: Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800° C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions, *Phys. Earth Planet. Inter.*, 100, 115-34, 1997.
- [6] Righter, K., and Drake, M. J.: Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation, *Earth Planet. Sci. Lett.*, 171, 383-99, 1999.
- [7] Holzheid, A., and Palme, H.: The formation of eucrites: Constraints from metal-silicate partition coefficients, *Meteorit. Planet. Sci. Arch.*, 42, 1817-29, 2007.
- [8] Cottrell, E., Walter, M. J., and Walker, D.: Metal-silicate partitioning of tungsten at high pressure and temperature: Implications for equilibrium core formation in Earth, *Earth Planet. Sci. Lett.*, 281, 275-87, 2009.
- [9] Righter, K., Pando, K. M., Danielson, L., and Lee, C.-T.: Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition, *Earth Planet. Sci. Lett.*, 291, 1-9, 2010.
- [10] Siebert, J., Corgne, A., and Ryerson, F. J.: Systematics of metal-silicate partitioning for many siderophile elements applied to Earth's core formation, *Geochim. Cosmochim. Acta*, 75, 1451-89, 2011.
- [11] Shofner G. A.: High pressure redox geochemistry of tungsten in metal-silicate systems: Implications for core formation in the Earth, *University of Maryland*, 2011.
- [12] Tuff, J., Wood, B. J., and Wade, J.: The effect of Si on metal-silicate partitioning of siderophile elements and implications for the conditions of core formation, *Geochim. Cosmochim. Acta*, 75, 673-90, 2011.
- [13] Wade, J., Wood, B. J., and Tuff, J.: Metal-silicate partitioning of Mo and W at high pressures and temperatures: Evidence for late accretion of sulphur to the Earth, *Geochim. Cosmochim. Acta*, 85, 58-74, (2012).
- [14] Burkemper, L. K., Agee, C. B., and Garcia, K. A.: Constraints on core formation from molybdenum solubility in silicate melts at high pressure, *Earth Planet. Sci. Lett.*, 335, 95-104, 2012.
- [15] Wood, B. J., Kiseeva, E. S., and Mirolo, F. J.: Accretion and core formation: the effects of sulfur on metal-silicate partition coefficients, *Geochim. Cosmochim. Acta*, 145, 248-67, 2014.
- [16] Seclaman A. C.: Chemical and physical behavior of the trace elements in the silicate melts of the Earth's mantle, *Université de Lyon*, 2016.
- [17] Rubie, D. C., Jacobson, S. A., Morbidelli, A., O'Brien, D. P., Young, E. D., de Vries, J., Nimmo, F., Palme, H. and Frost, D. J.: Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water, *Icarus*, 248, 89-108, 2015.
- [18] Rubie, D. C., Laurenz, V., Jacobson, S. A., Morbidelli, A., Palme H., Vogel, A. K., and Frost, D. J.: Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation, *Science*, 353, 1141-44, 2016.
- [19] Halliday, A.N.: The origins of volatiles in the terrestrial planets, *Geochim. et Cosmochim. Acta*, 105, 146-71, 2013.
- [20] Marty, B.: The origins and concentrations of water, carbon, nitrogen and noble gases on Earth, *Earth Planet. Sci. Lett.*, 313, 56-66, 2012.