

Hybrid modelling study of the Venusian oxygen ion escape

R. Jarvinen (1), **E. Kallio** (1,2), P. Janhunen (1), T. L. Zhang (3), S. Barabash (4), A. Fedorov (5), V. Pohjola (1) and I. Sillanpää (6)

(1) Finnish Meteorological Institute, (2) University of Helsinki, (3) Space Research Institute, Austrian Academy of Sciences, (4) Swedish Institute of Space Physics, (5) Centre d'Etude Spatiale des Rayonnements, (6) Southwest Research Institute (riku.jarvinen@fmi.fi)

Abstract

We study the solar wind induced escape of oxygen ions from the Venusian atmosphere by a hybrid simulation (HYB-Venus). In the Venus' upper atmosphere atomic oxygen (O^+) is the dominant ion species. Based on observations and modelling in the last 30 years O^+ is estimated to escape from Venus approximately at the rate of 10^{25} s^{-1} . In this study we use the magnetic and particle observations from the Venus Express space-craft and compare them to our simulation. Further, we study the O^+ escape rate and consider the energy budget of the escaping particles.