

Direct evidence for three-wave coupling in the solar wind during a type III emission from STEREO/SWAVES data

P. Henri (1,2), C. Briand (1), F. Califano (2) and A. Mangeney (1)

(1) LESIA, Observatoire de Paris, Université Paris Diderot, CNRS, UPMC, Meudon, France
(2) Dipartimento di Fisica, Università di Pisa, Pisa, Italy
(pierre.henri@obspm.fr / Fax: +33 145072806)

Abstract

The TDS (Time Domain Sampler) part of the WAVES experiment on board the two STEREO spacecraft allows the study of high resolution in-situ electric field waveforms in the solar wind.

From different TDS datasets, a complete set of direct evidence for three-wave coupling during a type III event have been recently reported [1], involving an electron beam-generated Langmuir wave (L), a second Langmuir wave (L') and ion acoustic density fluctuations (S). The mechanism is interpreted in term of the electrostatic Langmuir decay:

$$L \rightarrow L' + S$$

which is thought to be a first step toward the generation of type III radio emission at twice the plasma frequency ($EM_{2f_{pe}}$) from the coalescence of the two Langmuir waves: $L + L' \rightarrow EM_{2f_{pe}}$ [2].

First, the conservation of momentum and energy is checked through the resonant conditions on Doppler-shifted frequencies. Second, using information on the phase of the waves, a bicoherence analysis shows a good phase locking between the three waves, characteristic of a resonant interaction. Third, wavelet analysis allows to resolve for the first time the coupling regions, which spatial length is estimated to be 18 ± 5 km.

The Langmuir electrostatic decay dynamics is also investigated through Vlasov-Poisson simulations in order to confront the computed instability thresholds, growth rates and levels of saturation for density fluctuations with the STEREO/WAVES observations.

References

- [1] Henri, P. et al. (2009), *JGR*, 114, A03103
- [2] Ginzburg, V. L., and Zheleznyakov, V. V. (1958), *Soviet Astronomy*, 2, 653.