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Abstract

Compositional differences between meteorites have been
interpreted as being indicative of wide variations in the
degree of differentiation of their parent bodies (plan-
etesimals). Differentiated planetesimals must have un-
dergone (at least partial) melting caused by short lived
nuclides 26Al and °Fe [1]. Thermal models [2, 3, 4]
have shown that planetesimals may experience differ-
ing degrees of partial melting depending on the onset
time of accretion relative to the time of formation of
the Ca-Al-rich inclusions (CAIs), the accretion time,
and the final size of the planetesimals. Even the pres-
ence of a magma ocean for these bodies has been sug-
gested in the case of rapid accretion. These thermal
models base upon thermal conduction only and dis-
regard the possibility of convection before a magma
ocean develops. In fact, convection in a solid planetes-
imal is unlikely. However, it may set in for a sufficient
amount of partial melt even before the existence of a
magma ocean — e.g., melt reduces the viscosity of
the material by 3—4 orders of magnitude for 25% of
partial melt in suspension. Whether the existence of
convection is possible can be roughly estimated with
the internally heated Rayleigh number (Eq.(2)), i.e., a
measure for the strength of convection, as a function
of the layer thickness for different values of viscosity
(Fig. 1). The result suggests that the interior may ac-
tually convect even at small degrees of partial melting.
Considering that convection increases the heat trans-
port in the interior and that the planetesimal will cool
faster under these circumstances, the thermal evolu-
tion of a planetesimal and the amount of partial melt
that can be produced may differ from what is predicted
in earlier studies [2, 3, 4].

In the present study, we test the existence and strength

of convection in a planetesimal (radius of 260 km) and
its consequences for the thermal evolution. We use a
3D spherical convection model (GAIA) [5, 6] in which
the viscosity depends on temperature and the degree
of partial melt according the following Arrhenius law:
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Figure 1: Internally heated Rayleigh number as a
function of layer thickness (radius of the planetsimal)
for different values of viscosity. For the calculation of
Ra (Eq. (2)), we have assumed a heat source density
of H = 6.6-10~°W/m3. This value corresponds to a
heat source density at the time of 2 Ma after CAls as-
suming the canonical value of *°Al/*" Al to be 51077,
The dashed line indicates the critical Rayleigh num-
ber above which convection occurs (shaded area). Vis-
cosities lower than about 10?' Pas are likely if the melt
remains in suspension with the silicate (e.g., for 15%
melt the viscosity is about 10'® Pas for dislocation
creep).

with F the activation energy, R the gas constant, 7" the
temperature, 7). the reference viscosity, x the melt
fraction, and a, a constant that varies between 26 for
diffusion creep and 31 for dislocation creep [7]. A
free-slip boundary condition is applied at the surface
of a purely internally heated sphere. To take the full
sphere geometry into account the acceleration of grav-
ity, g, decreases linearly to zero in the centre. Thus,
the Rayleigh number is depth-dependent according to:
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with g(r) = 4/3G pr, p the density, « the ther-
mal expansivity, H the radioactive heat source density,
r the planetary radius, k the thermal conductivity, and
k the thermal diffusivity. In this preliminary study we
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do not consider variations of the thermal conductivity
or any volcanic heat transport.

We will compare the thermal evolution for models with
and without a reduced viscosity due to partial melt-
ing. Heat fluxes, temperature distribution (profiles)
and melt content in the interior as a function of time
are used as basic criteria to determine the differences.

References

(1]

(2]

[4]

[6]

Ransford, G. The accretional heating of the ter-
restrial planets: a review. Physics of the Earth and
Planetary Interiors 29, 209-217 (1982).

Merk, R., Breuer, D. & Spohn, T. Numerical
Modeling of 26Al-Induced Radioactive Melting
of Asteroids Considering Accretion. Icarus 159,
183-191 (2002)

Ghosh, A. and H.Y. Jr. McSween (1998) A ther-
mal model for the differentiation of Asteroid 4
Vesta, based on radiogenic heating, Icarus, 134,
187-206.

Hevey, PJ. and S. Sanders (2006) Am model for
planetesimal meltdown by 26Al and its implica-
tion for meteorite parent bodies, Meteoritics and
Planetary Science, 41, 95-106.

Httig, C. & Stemmer, K. Finite volume discretiza-
tion for dynamic viscosities on Voronoi grids.
Physics of the Earth and Planetary Interiors 171,
137-146 (2008).

Httig, C. & Stemmer, K. The spiral grid: A new
approach to discretize the sphere and its appli-
cation to mantle convection. Geochem. Geophys.
Geosyst. (2008)

Mei, S., W. Bai, T. Hiagara, D.L. Kohlstedt
(2002) Influence of water on plastic deformation
of olivine basalt aggregates, Earth Planet. Sci.
Lett., 201, 491-507.



mario.ebel
Text Box
EPSC2009-523, 2009




