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Introduction Preprocessing

The MESSENGER spacecraft performed two The MASCS data were first checked visually.
flybys of Mercury in 2008, with a third to follow in Because of a high level of noise, the spectral region
September 2009. MESSENGER will enter orbit petween 800 and 925 nm, where two channels of
about Mercury in 2011. During the first two flybys MASCS overlap, was excluded from this analysis.
the Mercury Atmospheric and Surface Composition Tpe calibrated spectra were converted to reflectance,

Spectrometer (MASCS) instrument obta}ned specira taking into account the solar irradiance at Mercury
of the surface along ground tracks crossing much of

the planet [1,2]. We have started analysis of the
surface spectra using a principal component approach. To retrieve and characterize the number and

The matn goal of thls. analysis is to identify and spectral shapes of the different components present
characterize spectral units along the MASCS ground . . .
in the dataset we applied an R-mode factor analysis,

[3] without any other correction.
Data analysis

tracks. a well-established technique in remote sensing
[4,5,6]. The factor analysis expresses the data in a
‘ . new vectorial base, for which the data covariance is
0'”# minimized. The identification of the different
i l q\hm‘ | components and their abundance is accomplished by
012 ’j"mj(lh“" "1l principal component analysis (PCA). The
r 1 eigenvectors and eigenvalues of the covariance
0.10r I matrix are evaluated, and the covariance matrix is
i 1 decomposed in the space generated by the
% 008/ #  eigenvectors. The eigenvectors corresponding to
8 i M j: larger eigenvalues are associated with most of the
2 0.0 W information contained in the data. The smaller
(secondary) eigenvalues are related to featureless

004} Eig. 2 eigenvectors that contribute very little to the data.
Finding the crossing point between principal and
002 Eig. 1 secondary eigenvalues is the primary task of PCA.
We used the eigenvalue ratio [4], the reconstruction
000 R ‘ error, and visual inspection of spectra-to-models

|
Wave.eng,i"(%m) comparisons. The spectra in the dataset are
assembled in matrix form as D = R - C, where D is
the matrix of the data, R the matrix of reconstructing
vectors, and C the matrix of relative concentration
coefficients. The goal of PCA is to decompose D

into two matrices; R will be composed of the

l
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Fig 1. Eigenvectors identified by the PCA
analysis from the full spectral range from
the flyby 1 data, each shifted by 0,01 .



EPSC Abstracts,

Vol. 4, EPSC2009-552, 2009
European Planetary Science Congress,
© Author(s) 2009

eigenvectors calculated from D, equivalent to
diagonalizing the D matrix. There is no unique
solution to this problem, and it is a common
situation in remote sensing to have more equations
than unknowns, resulting in an underdetermined
system. An estimation of the vectors needed to
reconstruct the data given the noise is the essential
step to solve the problem and to be able to converge
to an accurate solution. Because of the wide spectral
range of the data, we choose to apply the analysis
both to the entire range and also to each individual
channel, to monitor potential differences in behavior

between the visible (VIS) and the near-infrared (NIR)

portions of the spectrum.

O langt

represents a single observation. Then we estimated
the pairwise distance between each couple by a
Chebyshev distance (or metric) algorithm. The
estimated distance was used to compute the
hierarchical clustering of the data points by a
weighted centroid approach.

In this approach the distance between two clusters
is defined as the distance between the centroids of
each cluster, and the centroid of a cluster is defined
by the average position of all the sub-clusters,
weighted by the number of objects in each sub-
cluster. Because of the high volume of data
produced, we elaborated a visualization based on
“clustering steps.” At each process step the data

Application to the full MASCS dataset shows that points are clustered in the nearest cluster. After
in general seven eigenvectors are sufficient to enough steps the closest points (closeness being
reconstruct the data within the error. Even if there are defined by the adopted metric) are gathered together,
small differences between the two channels, the leaving alone the farthest point. These points are

eigenvectors do not show strong differences. Fig. 1 away from the data cloud because they exhibit a rare
shows the extracted eigenvectors for the entire combination of C matrix coefficients, and they must
spectral range. A comparison of the different belong to exotic spectral units, relative to the
channels indicates that the NIR portion is carrying observed surface.
significantly less information than the VIS portion. Next steps will include detailed analysis of derived
The first eigenvector always displays a strong reddish spectral clusters representatives (Fig. 2) by mean of
slope, compared with the others, and all eigenvectors neural network techniques (i.e., self-organizing
show characteristic spectral signatures. Each spectral maps) and linear deconvolution, after the spectral
eigenvector can be regarded as a representative of library of high-temperature measured analogue
different spectral classes, changing in abundance minerals is completed [7].
along the track. The concentration coefficients in the Summary
C matrix indicate that spectral units show significant By visualizing the “clustering steps” (Fig. 3)

geographical variation. Moreover, the spectral unit against the dataset geographical distribution we
variations show a strong correlation with surface observe the presence of isolated spectral units.
units mapped by MESSENGER’s Mercury Dual These spectral units show a strong correlation with
Imaging System (MDIS). To characterize the spectral surface units mapped by the MDIS imaging system.
units at a more detailed level, we considered each The next step is a detailed analysis of each identified
observation as a collection of its C matrix coefficients, unit. At the same time, we make use of the newly
high-temperature

obtaining a 7-fold vectorial space where each point available spectra from our
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Fig 2. Portion of the instrument ground track during the second flyby. The colors refer to the cluster
separated by the algorithm at the clustering step marked in Fig.3.a by the horizontal black line.
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Planetary Emissivity Laboratory [7] to progress
toward the identification of the components of each
unit. The latest applications to data from the first
flyby give us confidence in the ability of these
techniques to extract physical properties of surface
material.
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Fig 3. Clustering steps for the data defined by
the C (coefficients) matrix. White background
color indicates data point not belonging to any
cluster. Others color codes refer to a specific
cluster. The cluster step increases in the upward
direction, the horizontal direction change the
data point. a. Flyby 2 data , b. Flyby 1.




