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 Introduction 
The MESSENGER spacecraft performed two 

flybys of Mercury in 2008, with a third to follow in 
September 2009.  MESSENGER will enter orbit 
about Mercury in 2011. During the first two flybys 
the Mercury Atmospheric and Surface Composition 
Spectrometer (MASCS) instrument obtained spectra 
of the surface along ground tracks crossing much of 
the planet [1,2]. We have started analysis of the 
surface spectra using a principal component approach. 
The main goal of this analysis is to identify and 
characterize spectral units along the MASCS ground 
tracks. 

 

 

Fig 1. Eigenvectors identified by the PCA 
analysis from the full spectral range from 
the flyby 1 data, each shifted by 0,01 . 

 

 Preprocessing 
The MASCS data were first checked visually. 

Because of a high level of noise, the spectral region 
between 800 and 925 nm, where two channels of 
MASCS overlap, was excluded from this analysis. 
The calibrated spectra were converted to reflectance, 
taking into account the solar irradiance at Mercury 
[3] without any other correction. 
 Data analysis 

To retrieve and characterize the number and 
spectral shapes of the different components present 
in the dataset we applied an R-mode factor analysis, 
a well-established technique in remote sensing 
[4,5,6]. The factor analysis expresses the data in a 
new vectorial base, for which the data covariance is 
minimized. The identification of the different 
components and their abundance is accomplished by 
principal component analysis (PCA). The 
eigenvectors and eigenvalues of the covariance 
matrix are evaluated, and the covariance matrix is 
decomposed in the space generated by the 
eigenvectors. The eigenvectors corresponding to 
larger eigenvalues are associated with most of the 
information contained in the data. The smaller 
(secondary) eigenvalues are related to featureless 
eigenvectors that contribute very little to the data. 

Finding the crossing point between principal and 
secondary eigenvalues is the primary task of PCA. 
We used the eigenvalue ratio [4], the reconstruction 
error, and visual inspection of spectra-to-models 
comparisons. The spectra in the dataset are 
assembled in matrix form as D = R · C, where D is 
the matrix of the data, R the matrix of reconstructing 
vectors, and C the matrix of relative concentration 
coefficients. The goal of PCA is to decompose D 
into two matrices; R will be composed of the 
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  eigenvectors calculated from D, equivalent to 
diagonalizing the D matrix. There is no unique 
solution to this problem, and it is a common 
situation in remote sensing to have more equations 
than unknowns, resulting in an underdetermined 
system. An estimation of the vectors needed to 
reconstruct the data given the noise is the essential 
step to solve the problem and to be able to converge 
to an accurate solution. Because of the wide spectral 
range of the data, we choose to apply the analysis 
both to the entire range and also to each individual 
channel, to monitor potential differences in behavior 
between the visible (VIS) and the near-infrared (NIR) 
portions of the spectrum. 

Application to the full MASCS dataset shows that 
in general seven eigenvectors are sufficient to 
reconstruct the data within the error. Even if there are 
small differences between the two channels, the  

eigenvectors do not show strong differences. Fig. 1 
shows the extracted eigenvectors for the entire 
spectral range. A comparison of the different 
channels indicates that the NIR portion is carrying 
significantly less information than the VIS portion. 
The first eigenvector always displays a strong reddish 
slope, compared with the others, and all eigenvectors 
show characteristic spectral signatures. Each spectral 
eigenvector can be regarded as a representative of 
different spectral classes, changing in abundance 
along the track. The concentration coefficients in the 
C matrix indicate that spectral units show significant 
geographical variation. Moreover, the spectral unit 
variations show a strong correlation with surface 
units mapped by MESSENGER’s Mercury Dual 
Imaging System (MDIS). To characterize the spectral 
units at a more detailed level, we considered each 
observation as a collection of its C matrix coefficients, 
obtaining a 7-fold vectorial space where each point 

represents a single observation. Then we estimated 
the pairwise distance between each couple by a 
Chebyshev distance (or metric) algorithm. The 
estimated distance was used to compute the 
hierarchical clustering of the data points by a 
weighted centroid approach. 

 In this approach the distance between two clusters 
is defined as the distance between the centroids of 
each cluster, and the centroid of a cluster is defined 
by the average position of all the sub-clusters, 
weighted by the number of objects in each sub-
cluster. Because of the high volume of data 
produced, we elaborated a visualization based on 
“clustering steps.” At each process step the data 
points are clustered in the nearest cluster. After 
enough steps the closest points (closeness being 
defined by the adopted metric) are gathered together, 
leaving alone the farthest point. These points are 
away from the data cloud because they exhibit a rare 
combination of C matrix coefficients, and they must 
belong to exotic spectral units, relative to the 
observed surface. 

Next steps will include detailed analysis of derived 
spectral clusters representatives (Fig. 2) by mean of 
neural network techniques (i.e., self-organizing 
maps) and linear deconvolution, after the spectral 
library of high-temperature measured analogue 
minerals is completed [7].  
 Summary 

By visualizing the “clustering steps” (Fig. 3) 
against the dataset geographical distribution we 
observe the presence of isolated spectral units. 
These spectral units show a strong correlation with 
surface units mapped by the MDIS imaging system. 
The next step is a detailed analysis of each identified 
unit. At the same time, we make use of the newly 
available high-temperature spectra from our 

 
Fig 2. Portion of the instrument ground track during the second flyby. The colors refer to the cluster 

separated by the algorithm at the clustering step marked in Fig.3.a by the horizontal black line. 
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  Planetary Emissivity Laboratory [7] to progress 
toward the identification of the components of each 
unit. The latest applications to data from the first 
flyby give us confidence in the ability of these 
techniques to extract physical properties of surface 
material. 
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a.  

b.  

Fig 3. Clustering steps for the data defined by 
the C (coefficients) matrix. White background 
color indicates data point not belonging to any 
cluster. Others color codes refer to a specific 
cluster. The cluster step increases in the upward 
direction, the horizontal direction change the 
data point. a. Flyby 2 data , b.  Flyby 1.   


