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Introduction  

Analysis of Doppler tracking data and radar 
images from the Cassini spacecraft have recently 
provided estimates of the low degree gravity field 
[1], and spin pole direction [2] of Titan. We 
examine implications of these measurements for 
the internal structure and rotational dynamics of 
that body. We derive separate estimates of the 
polar moment of inertia of Titan from the degree 
two gravity field, under the assumption of 
hydrostatic equilibrium, and from the spin pole 
direction, under the assumption of a fully damped 
spin-orbit configuration, or multi-frequency 
Cassini state. These estimates are quite different. 
We interpret the gravity-derived value as the 
actual moment of inertia of Titan, and the larger 
spin-derived value as an effective moment of 
inertia of a mechanically decoupled ice shell. This 
implies a sub-surface ocean, as the decoupling 
agent. 

Gravity constraints 

For a body in hydrostatic equilibrium and 
synchronous rotation, the imposed tidal and 
rotational potentials together induce changes in the 
mass distribution which are mainly manifest as 
degree two spherical harmonic coefficients in the 
gravitational potential [3]: 
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where the ratio of centrifugal and gravitational 
accelerations on the equator is 
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and kf  is a fluid Love number [4] or scale factor 
which relates the imposed and induced potentials. 
Observed values of the gravitational coefficients, 
from the Cassini tracking data [1], are consistent 

with this pattern, and have fluid Love numbers 
very close to 1. In contrast to the situation for the 
Galilean satellites [6,7,8,9] no a priori constraints 
were applied in deriving the coefficient estimates. 
Despite that, the inferred ratio of J2/C2,2 is very 
close to the hydrostatic value of 10/3.  

If fluid Love numbers in the range (0.9-1.1) are 
used in the Darwin-Radau relation [5], we obtain 
an estimate of the polar moment of inertia 

 

 

This value thus likely reflects the actual moment 
of inertia of Titan and suggests a reasonable 
degree of central condensation, though less than 
has been assumed in many theoretical models 
[10,11,12].  

Spin pole constraints 

The classical means of determining the moment of 
inertia of a planet, without hydrostatic assumptions, 
is via observation of the rate of spin pole 
precession. For a rapidly rotating body, this 
observation constrains the moment difference ratio  
H, where 2/)( BACHC +−=∗ . 

If the two gravitational potential coefficients 
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are also known, this provides 3 constraints on the 
3 principal moments A < B < C, and they can all 
be determined. This is the means by which the 
moments of inertia of Earth [13] and Mars [14] are 
known. 

A disadvantage for application of this strategy to a 
body like Titan is that the expected spin pole 
precession rate is very slow. A better approach, in 
such cases, is available if the spin pole is fully 
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  damped, since then the angular separation between 
spin and orbit poles is itself diagnostic of the 
moments of inertia. All that is required then is an 
accurate determination of the spin pole direction, 
rather than a determination of its rate of change. If 
the orbit pole precession rate is uniform, the 
damped spin pole will maintain a constant 
obliquity, or angular separation from the orbit pole, 
and will remain coplanar with the orbit pole and 
the invariable pole, about which the orbit pole is 
precessing. Such a configuration is known as a 
Cassini state [15,16], in honor of G.D. Cassini 
who realized in 1693 that the Moon behaves that 
way. 

Titan does not quite satisfy the steady orbit 
precession criterion. The orbit precesses, with a 
period of 700 years and inclination of 0.28 degree, 
about Saturn’s spin pole [17], but Saturn’s spin 
pole also precesses, with a period of 1.87 million 
years and inclination of 26.7 degrees, about its 
own orbit pole [18]. However, the dynamical 
equivalent of a Cassini state configuration is easily 
extended to this multi-frequency situation. 

The projection of the orbit pole unit vector onto 
the invariable plane can be represented as a 
complex scalar whose time evolution is given by a 
Poisson series. The linearized equation of motion 
for the complexified spin pole S is 

                   )( SNI
dt

dS
−−= α  

where the rate parameter is 
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The corresponding fully damped spin pole has the 
same phases gj and frequencies fj as the orbit pole, 
but the amplitudes sj are related to the orbit pole 
amplitudes nj via [19, 20]  
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In a multi-frequency version of the Cassini state, 
the spin and orbit poles are no longer coplanar 
with the invariable pole, as has been observed for 
Titan [2].  This is not necessarily evidence of 
failure to be in a fully damped state, but may 
simply reflect the more complex orbit pole 
dynamics. 

The polar moment required to match the observed 

spin pole orientation is 55.0/ 2 =≡ MRCc . 
This is clearly in excess of the homogeneous 
spherical value of c = 2/5, but less than the thin 
shell value of c = 2/3. It is thus plausibly 
interpreted as an effective moment of inertia of an 
outer ice layer which is mechanically decoupled 
from the deeper interior. 

The problem of precessional coupling between 
Earth’s fluid core and solid mantle has long been 
studied experimentally [21, 22], analytically [23, 
24] and observationally [25, 26]. Our grasp of the 
situation at Titan is still in its infancy, but the 
system parameters are different enough from Earth 
that it is already informative. 

References 

 [1] Rappaport, N. et al. (2008), AGU Meeting 
Abstract # P21A-1343.  [2] Stiles B.W. et al. 
(2008) AJ, 135, 1669-1680.  [3] Hubbard WB and 
Anderson JD (1979) Icarus 33, 336-341. [4] Munk 
WH and MacDonald GJF (1960) Rotation of the 
Earth, Cambridge Univ. Press. [5] Bourda G and 
Capitaine N (2004) A&A 428, 691-702. 
[6]  Anderson JD et al. (1996) Science, 272, 709-
712. [7]  Anderson JD et al. (1998) Science, 281, 
2019-2022. [8]  Anderson JD et al.  (1996) Nature, 
384, 541-543.  [9]  Anderson JG et al. (1998) 
Science, 280, 1573-1576. [10]  Grasset O et al. 
(2000) Planet. Space Sci. 48, 617-636. [11]  Sohl F 
et al (2003) JGR 108, 5130-5140. [12]  Tobie G et 
al. (2005) Icarus 175, 534-549. [13]  Williams JG 
(1994) AJ 108, 711-724. [14]  Folkner WM et al. 
(1997) Science 278, 1749-1752. [15]  Colombo, G 
(1966) AJ 71, 891-896. [16]  Peale SJ (1969) AJ 
74, 483-489. [17]  Sinclair AT (1977) MNRAS 
180, 447-459. [18]  Ward WR and Hamilton DP 
(2004) AJ 128, 2501-2509. [19]  Ward WR and 
DeCampli WM (1979) ApJ 230, L117-L121. 
[20]  Bills BG (2005) Icarus 175, 233-247. [21] 
Stewartson K and Roberts PH (1963) JFM 17, 1-
20.  [22] Noir R et al. (2001) GRL 28, 3785-3788.  
[23] Noir R et al. (2003) JFM 437, 283-299. 
[24] Schmitt D and Jault D (2004) J. Comp. Phys. 
197, 671-685. [25]  Charlot P et al. (1995) AJ 109, 
418-427. [26] Lambert SB and Dehant V (2007) 
A&A, 469, 777-781 
 


