

The surface spot on KBO Haumea

Pedro Lacerda (1)

(1) Queen's University Belfast, UK (p.lacerda@qub.ac.uk)

Abstract

Kuiper belt object Haumea (formerly 2003 EL₆₁) is one of the most interesting bodies in the outer solar system. Approximately 2000 × 1600 × 1000 km in size [1], it is one of the largest Kuiper belt objects (KBOs) and an unusually triaxial one for its size. Haumea is rotationally elongated due to its extremely fast 3.9-hour-period rotation[1, 2, 3]. Unlike other 1000 km-scale KBOs, which are coated in methane-ice, the surface of Haumea is covered in almost pure water ice [4, 5]. This feature is shared by only a few other KBOs [6, 7], all relatively close to Haumea in orbital space, and by the largest of the two satellites of Haumea [8], all thought to originate in a shattering collision a few Gyrs ago [9, 10]. The bulk density of Haumea, estimated around 2.5 g cm⁻³ [1, 2], suggests a rocky interior composition, different from the water-ice surface. Recently, Haumea has become the second KBO after Pluto to show evidence for surface features. A region darker and redder than the average surface of Haumea has been identified [3, 11, 12], the composition and origin of which remain unknown. I will discuss this recent finding and what it may tell us about Haumea.

References

- [1] Rabinowitz, D. L., Barkume, K., Brown, M. E., Roe, H., Schwartz, M., Tourtellotte, S., Trujillo, C. (2006) *ApJ*, 639, 1238–1251
- [2] Lacerda, P., Jewitt, D. (2007) *AJ*, 133, 1393–1408
- [3] Lacerda, P., Jewitt, D., Peixinho, N. (2008) *AJ*, 135, 1749–1756
- [4] Trujillo, C. A., Brown, M. E., Barkume, K. M., Schaller, E. L., Rabinowitz, D. L. (2007) *ApJ*, 655, 1172–1178
- [5] Pinilla-Alonso, N., Brunetto, R., Licandro, J., Gil-Hutton, R., Roush, T. L., Strazzulla, G. (2009) *A&A*, 496, 547–556
- [6] Barkume, K. M., Brown, M. E., Schaller, E. L. (2008) *AJ*, 135, 55–67
- [7] Schaller, E. L., Brown, M. E. (2008) *ApJ*, 684, L107–L109
- [8] Barkume, K. M., Brown, M. E., Schaller, E. L. (2006) *ApJ*, 640, L87–L89
- [9] Brown, M. E., Barkume, K. M., Ragozzine, D., Schaller, E. L. (2007) *Nature*, 446, 294–296
- [10] Ragozzine, D., Brown, M. E. (2007) *AJ*, 134, 2160–2167
- [11] Lacerda, P. (2009) *AJ*, 137, 3404–3413
- [12] Fraser, W. C., Brown, M. E. (2009) *ApJ*, 695, L1–L3

Additional Information

This work has been funded by a grant to David Jewitt from the US National Science Foundation and by the UK Royal Society through a Newton Fellowship.