

Radar Sounding of Europa's Subsurface Properties and Processes: The View from Earth

D. D. Blankenship (1), D. A. Young (1), W. B. Moore (2) and J. C. Moore (3,4)

(1) University of Texas at Austin, Austin, Texas, USA, (2) University of California at Los Angeles, California, USA, (3) University of Lapland, Finland, (4) University of Oulu, Finland (blank@ig.utexas.edu)

Abstract

A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface [1]. Other objectives will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface as well as regional and global heat flow variations. Orbital radar sounding, a now maturing technology, will be an essential tool for this work. We review the hypothesized processes that control the thermal, compositional and structural properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. We introduce fundamental concepts in radar sounding and then assess analog processes represented by, and sounded in, Earth's ice sheet. We use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for testing the hypotheses for the formation of major features.

Europa is a hypothesized site of incipient habitability because of its potentially vast subsurface ocean. The presence of this water reservoir has been inferred indirectly from Europa's induced magnetic field [2, 3] and tectonic mapping of its young surface [4, 5]. Future space-based geodetic measurements of Europa's time varying gravity field would definitively demonstrate the existence of an ocean. However, understanding this ocean's coupling to its overlying crust — key for understanding Europa's astrobiologic potential — will require sounding Europa's third dimension.

Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets [6], and orbital examples have been successfully deployed at Earth's Moon and Mars. Recent terrestrial examples include the University of Texas's High Capability Airborne Radar Sounder (HiCARS) [7], the British Antarctic Survey's PASIN system [8], and the University of Kansas's IPR and CARDS systems [9]. Spaceborne demonstrations include NASA's Apollo 17's ALSE [10], JAXA's LRS system on the Kaguya lunar orbiter [11], MARSIS on-board ESA's Mars Express [12], and SHARAD on-board NASA's Mars Reconnaissance Orbiter [13]. We

review the target of observations, Europa's ice crust and the ocean that likely lies beneath; summarize the state of the art of radar sounding systems; survey previous observations made by ice penetrating radar at Earth; and examine the challenge of operating such a system at Europa.

Liquid water containing impurities (brine), is an effective conductor of electricity, and hence strongly dissipates electromagnetic energy. In addition, strong contrast in real permittivity at radio frequencies between pure water ice ($\epsilon \sim 3.15$) and liquid water ($\epsilon \sim 80$; [7, 14]) lead to a large dielectric impedance contrast that typically results in a highly reflective interface, with a reflection of half or more the incident power, compared to a thousandth of the incident power reflected by silicate rock. It is this strong contrast that enables exploration for water within of Europa's crust.

We can use Earth analog studies to describe the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.

References

- [1] Donald D. Blankenship, Duncan A. Young, William B. Moore, and John C. Moore, "Radar imaging of Europa's subsurface properties and processes: the view from Earth," in *Europa*, R. T. Pappalardo, W. B. McKinnon, and K. Khurana, Eds., Tucson, AZ, in press, Space Science Series, The University of Arizona Press.
- [2] M. G. Kivelson, K. K. Khurana, C. T. Russell, M. Volwerk, R. J. Walker, and C. Zimmer, "Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa," *Science*, vol. 289, pp. 1340–1343, Aug. 2000.
- [3] Kevin P. Hand and Christopher F. Chyba, "Empirical constraints on the salinity of the europian ocean and implications for a thin ice shell," *Icarus*, vol. 189, no. 2, pp. 424–438, 2007.

[4] G. V. Hoppa, B. R. Tufts, R. Greenberg, and P. E. Geissler, "Formation of cycloidal features on Europa," *Science*, vol. 285, pp. 1899–1902, Sept. 1999.

[5] R. T. Pappalardo, M. J. S. Belton, H. H. Breeman, M. H. Carr, C. R. Chapman, G. C. Collins, T. Denk, S. Fagents, P. E. Geissler, B. Giese, R. Greeley, R. Greenberg, J. W. Head, P. Helfenstein, G. Hoppa, S. D. Kadel, K. P. Klaasen, J. E. Klemaszewski, K. Magee, A. S. McEwen, J. M. Moore, W. B. Moore, G. Neukum, C. B. Phillips, L. M. Prockter, G. Schubert, D. A. Senske, R. J. Sullivan, B. R. Tufts, E. P. Turtle, R. Wagner, and K. K. Williams, "Does Europa have a subsurface ocean? Evaluation of the geological evidence," *Journal of Geophysical Research*, vol. 104, pp. 24015–24056, Oct. 1999.

[6] Robert G. Bingham and Martin J. Siegert, "Radio-echo sounding over polar ice masses," *Journal of Environmental and Engineering Geophysics*, vol. 12, no. 1, pp. 47–62, 2007.

[7] Matthew E. Peters, Donald D. Blankenship, and David L. Morse, "Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams," *Journal of Geophysical Research*, vol. 110, no. B06303, 2005.

[8] F. Heliere, Chung-Chi Lin, H. Corr, and D. Vaughan, "Radio echo sounding of Pine Island Glacier, West Antarctica: Aperture synthesis processing and analysis of feasibility from space," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 45, no. 8, pp. 2573–2582, 2007.

[9] S. Gogineni, D. Tammana, D. Braaten, C. Leuschen, T. Akins, J. Legarsky, P. Kanagaratnam, J. Stiles, C. Allen, and K. Jezek, "Coherent radar ice thickness measurements over the Greenland ice sheet," *Journal of Geophysical Research*, vol. 106, no. D24, pp. 33761–33772, 2001.

[10] L.J. Porcello, R.L. Jordan, J.S. Zelenka, G.F. Adams, R.J. Phillips, Jr. Brown, W.E., S.H. Ward, and P.L. Jackson, "The Apollo lunar sounder radar system," *Proceedings of the IEEE*, vol. 62, no. 6, pp. 769–783, 1974.

[11] Takayuki Ono, Atsushi Kumamoto, Yasushi Yamaguchi, Atsushi Yamaji, Takao Kobayashi, Yoshiya Kasahara, and Hiroshi Oya, "Instrumentation and observation target of the Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft," *Earth Planets and Space*, vol. 60, no. 4, pp. 321–332, 2008.

[12] Giovanni Picardi, Jeffrey J. Plaut, Daniela Bicardi, Ornella Bombaci, Diego Calabrese, Marco Cartacci, Andrea Cicchetti, Stephen M. Clifford, Peter Edenhofer, William M. Farrell, Costanzo Federico, Alessandro Frigeri, Donald A. Gurnett, Tor Hagfors, Essam Heggy, Alain Herique, Richard L. Huff, Anton B. Ivanov, William T. K. Johnson, Rolando L. Jordan, Donald L. Kirchner, Wlodek Kofman, Carlton J. Leuschen, Erling Nielsen, Roberto Orosei, Elena Pettinelli, Roger J. Phillips, Dirk Plettemeier, Ali Safaeinili, Roberto Seu, Ellen R. Stofan, Giuliano Vannaroni, Thomas R. Watters, and Enrico Zampolini, "Radar soundings of the subsurface of Mars," *Science*, vol. 310, no. 5756, pp. 1925–1928, 2005.

[13] Roberto Seu, Roger J. Phillips, Daniela Bicardi, Roberto Orosei, Arturo Masdea, Giovanni Picardi, Ali Safaeinili, Bruce A. Campbell, Jeffrey J. Plaut, Lucia Marinangeli, Suzanne E. Smrekar, and Daniel C. Nunes, "SHARAD sounding radar on the Mars Reconnaissance Orbiter," *Journal of Geophysical Research*, vol. 112, no. E05S05, 2007.

[14] Bruce A. Campbell, *Radar Remote Sensing of Planetary Surfaces*, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2002.