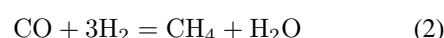
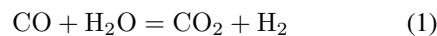


The origin of Ganymede: implications for volatile content

O. Mousis (1) and Y. Alibert (1)



(1) Université de Franche-Comté, Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besançon Cedex, France
 (olivier.mousis@obs-besancon.fr / Fax: +33-381-666944)

Abstract

We use an evolutionary turbulent model of Jupiter's subnebula to constrain the composition of ices incorporated in its regular icy satellites [1]. We consider CO₂, CH₃OH, CO, CH₄, N₂, NH₃, H₂S, Ar, Kr and Xe as the major volatile species existing in the gas-phase of the solar nebula. All these volatile species, except CO₂ which crystallized as a pure condensate, are assumed to be trapped by H₂O to form hydrates or clathrate hydrates in the solar nebula. Once condensed, these ices were incorporated into the growing planetesimals produced in the feeding zone of proto-Jupiter. Some of these solids then flowed from the solar nebula to the subnebula, and have been accreted by the forming Jovian regular satellites. We show that ices embedded in solids entering at early epochs into the Jovian subdisk were all vaporized. This leads us to consider two different scenarios of regular icy satellite formation in order to estimate the composition of the ices they contain. In the first scenario, icy satellites were accreted from planetesimals that have been produced in Jupiter's feeding zone without further vaporization, whereas, in the second scenario, icy satellites were accreted from planetesimals produced in the Jovian subnebula. In this latter case, we study the evolution of carbon and nitrogen gas-phase chemistries in the Jovian subnebula and we show that the conversions of N₂ to NH₃, of CO to CO₂, and of CO to CH₄ were all inhibited in the major part of the subdisk. Finally, we assess the mass abundances of the major volatile species with respect to H₂O in the interiors of the Jovian regular icy satellites, including Ganymede.

Chemistry in the Jovian subnebula

The net reactions relating CO, CH₄, CO₂, N₂ and NH₃ in a gas dominated by H₂ are

which all proceed to the right with decreasing temperature at constant pressure. Reaction (1) has a rate coefficient which is very low, even at temperatures as high as 2000 K [1]. Such a high temperature range is only reached at distances quite close to Jupiter and at early epochs in the Jovian subnebula. As a result, the amount of carbon species produced through this reaction is insignificant during the whole lifetime of the subnebula.

Reactions (2) and (3) are illustrated by Figs. 1 and 2. At equilibrium, CO:CH₄ and N₂:NH₃ ratios depend only on local conditions of temperature and pressure. CO:CH₄ and N₂:NH₃ ratios of 1000, 1 and 0.001 are plotted in Figs. 1 and 2, and are compared to our turbulent model at three different epochs (0 yr, 0.56 Myr and 0.6 Myr). These figures show that, when the kinetics of chemical reactions are not considered, CH₄ and NH₃ progressively dominate with time in the major part of our turbulent model of the Jovian subnebula rather than CO and N₂.

However, the actual CO:CH₄ and N₂:NH₃ ratios depend on the chemical timescales, which characterize the rates of CO to CH₄ and N₂ to NH₃ conversions in our model of the Jovian subnebula. Taking into account the kinetics of chemical reactions, we have inferred that the efficiency of the conversion is limited only to the inner part of the Jovian subnebula and at early times of its first phase. All these calculations imply that CO:CH₄, CO₂/CO and N₂:NH₃ gas phase molecular ratios remain almost constant during the whole lifetime of the Jovian subnebula. In these conditions, the composition of the ices produced within the Jovian subnebula is then close to that of the ices produced in the solar nebula [2] (see Table 1).

References

- [1] Alibert, Y., Mousis, O. and Benz W. 2005, *Astronomy and Astrophysics*, 439, 1205–1213.
- [2] Mousis, O., et al. 2009, *The Astrophysical Journal*, 696, 1348–1354.

Table 1: Average composition of ices formed in the outer solar nebula. Composition of ices is calculated in the cases of 100% and 10% clathration efficiencies. Ratio of the mass of ice i to the global mass of ices (wt%) is determined from a gas phase composition given by [2].

Ice	100% clathration efficiency	10% clathration efficiency
H ₂ O	5.00×10^{-1}	5.22×10^{-1}
CO	2.78×10^{-1}	2.50×10^{-1}
CO ₂	1.13×10^{-1}	1.17×10^{-1}
NH ₃	3.60×10^{-2}	3.75×10^{-2}
H ₂ S	2.37×10^{-2}	2.26×10^{-2}
N ₂	2.16×10^{-2}	2.25×10^{-2}
CH ₃ OH	1.93×10^{-2}	2.01×10^{-2}
Ar	4.49×10^{-3}	4.68×10^{-3}
CH ₄	3.42×10^{-3}	2.23×10^{-3}
PH ₃	8.21×10^{-4}	6.59×10^{-4}
Kr	7.40×10^{-6}	7.72×10^{-6}
Xe	1.86×10^{-6}	1.46×10^{-6}

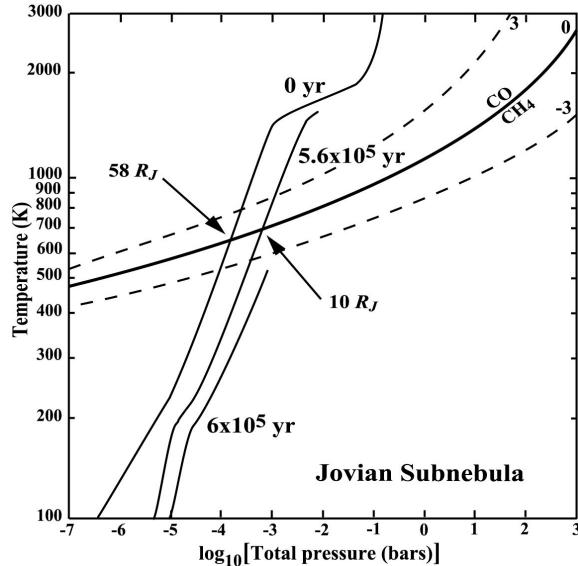


Figure 1: Calculated ratios of CO:CH₄ in the Jovian subnebula at the equilibrium. The solid line labelled CO-CH₄ corresponds to the case where the abundances of the two gases are equal. When moving towards the left side of the solid line, CO/CH₄ increases, while moving towards the right side of the solid line, CO/CH₄ decreases. The dotted contours labelled -3, 0, 3 correspond to \log_{10} CO:CH₄ contours. Thermodynamical conditions in our evolutionary turbulent model of the Jovian subdisk are represented at three epochs of the subnebula. The Jovianocentric distance, in R_J , is indicated by arrows when CO:CH₄ = 1 for $t = 0$ and 0.56 Myr.

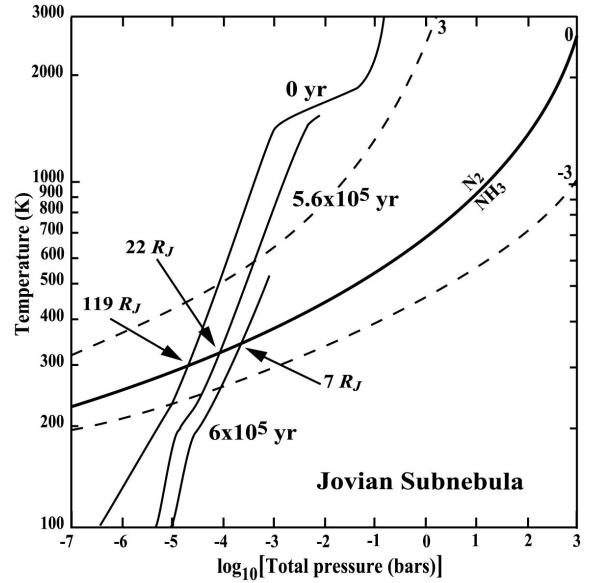


Figure 2: Same as Fig. 1, but for calculated ratios of N₂:NH₃ at equilibrium.