

A slow-flowing process of initial gravitational condensation of a protoplanetary cloud with the point of view of quantum mechanical interaction of particles

A. M. Krot

United Institute of Informatics Problems of National Academy of Sciences of Belarus (alxkrot @ newman.bas-net.by
/ Fax: +375-17-3318403)

Abstract

The gravitational condensation problem of an infinitely distributed substance (like a gas-dust protoplanetary cloud) is directly connected with the gravitational instability problem, see for example [1], [2]. The linearized theory of gravitational instability leads to the well-known Jeans' criterion [1]. However, the main difficulty of Jeans' theory is connected with a gravitational paradox: for an infinite homogeneous substance there exists no potential of gravitational field in accord with the Poisson equation [2]. This main problem of self-condensation of an infinitely distributed substance has been solved within framework of the proposed statistical theory of spheroidal bodies [3] – [7]. In particular, the works [6], [7] explains a self-condensation of an infinitely distributed substance through a slowly evolving process of gravitational condensation of a forming spheroidal body.

This work studies a quantum mechanical approach to description of slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The antidiffusion equation for an initial evolution of mass density function of a gas-dust cloud is considered here. This antidiffusion equation coincides completely with the analogous equation for a slowly gravitational compressible spheroidal body in the vicinity of instable mechanical equilibrium (initial and quasi-equilibrium) state [6], [7].

A quantum mechanical model for description of gravitating spheroidal body has been proposed in [8]. This work considers the slow-flowing process of initial gravitational condensation of a spheroidal body based on the proposed model of “vibrating strainer”. The process of quasi-equilibrium gravitational compression of a

spheroidal body in space within framework of the “vibrating strainer” model can be interpreted on the basis of Wiener process in a space-frequency domain.

Recently Nottale [9], [10] has developed a new model of the solar system structuring on the basis of the scale relativistic approach. In Nottale's approach, both direct and reverse Wiener processes are considered in parallel; that leads to the introduction of a twin Wiener (backward and forward) process as a single complex process [9]. For the first time backward and forward derivatives for the Wiener process were introduced in the work of Nelson [11]. The important point in Nelson's works is that a diffusion process can be described in terms of a Schrödinger-type equation, with help of the hypothesis that any particle in the empty space, under the influence of any interaction field, is also subject to a universal Brownian motion (i.e. from the mathematical view-point, a Markov–Wiener process) [10] based on the quantum nature of space-time in quantum gravity theories or on quantum fluctuations on cosmic scale [12], [13].

Independently in the reports [8], [14], the Wiener process in a space-frequency domain has been used as a basic model of quantum mechanical interaction of particles causing the slow-flowing process of initial gravitational condensation of a spheroidal body. This work shows that interactions of oscillating particles lead to resonance increase of parameter α of gravitational compression of spheroidal body under carrying out special quantum mechanical conditions.

According to the antidiffusion equation [5], [6], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. For the first time the conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [15],

[16]). However, if an intensity of conductive flow of mass density increases sharply then the linear antidi diffusion equation becomes a nonlinear one. Using integral substitution, the nonlinear antidi diffusion equation can be reduced to the linear antidi diffusion equation relative to the function of an angular momentum density.

Thus, a nonlinear mass density flow induces a flow of angular momentum density because streamlines of conductive antidi diffusion flow come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of particles that implies a superposition of their specific angular momentums. This superposition forms an antidi diffusion flow of angular momentum density into a gravitating spheroidal body that results in origin of a gravitational field (when the corresponding parameter of gravitational compression exceeds its threshold value α_g) [6], [7].

References

[1] Jeans, J. (1929) *Astronomy and cosmogony*. Cambridge: University Press.

[2] Safronov, V.S. (1969) *Evolution of protoplanetary cloud and formation of Earth and planets*. Moscow: Nauka (reprinted by NASA Tech. Transl. F-677, Washington, D.C.; 1972).

[3] Krot, A.M. (1996) The statistical model of gravitational interaction of particles. *Uspekhi Sovremennoi Radioelektroniki* (special issue “Cosmic Radiophysics”, Moscow), 8, 66–81 (in Russian).

[4] Krot, A.M. (1999) Use of the statistical model of gravity for analysis of nonhomogeneity in earth surface. *Proc. SPIE's 13th Annual Intern. Symposium “AeroSense”*, Orlando, Florida, USA, 3710, 1248–1259.

[5] Krot, A.M. (2000) Statistical description of gravitational field: a new approach. *Proc. SPIE's 14th Annual Intern. Symposium “AeroSense”*, Orlando, Florida, USA, 4038, 1318–1329.

[6] Krot A.M. (2009) On the principal difficulties and ways to their solution in the theory of gravitational condensation of infinitely distributed dust substance. *Proc. 2007 IAG General Assembly*, Vol.133, *Observing our Changing Earth* (Ed. by M.G. Sideris), Springer: Berlin, Heidelberg, 283–292.

[7] Krot, A.M. (2008) A statistical approach to investigate the formation of the solar system. *Chaos, Solitons & Fractals*, doi:10.1016/j.chaos.2008.06.014.

[8] Krot, A.M. (2002) A quantum mechanical approach to description of gravitating body. *Proc. 34th Scientific Assembly of the Committee on Space Research (COSPAR) – The 2nd World Space Congress-2002*, Houston, Texas, USA.

[9] Nottale, L. (1993) Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific, 311.

[10] El Naschie, M.S, Rössler, E. and Prigogine, I., editors. (1995) *Quantum mechanics, diffusion and chaotic fractals*. Oxford: Pergamon Press.

[11] Nelson, E. (1966) Derivation of the Schrödinger equation from Newtonian mechanics. *Physical Review*, 150, 4, 1079–1085.

[12] Ord, G. (1997) Classical particles and the Dirac equation with an electromagnetic force. *Chaos, Solitons & Fractals*, 8, 727–741.

[13] Sidharth, E.G. (2001) *The chaotic universe*. New York: Nova Science.

[14] Krot, A.M. (2006) Exploring gravitational interaction of particles based on quantum mechanical principles: an oscillator approach. *Proc. EGU General Assembly*, Vienna, Austria; *Geophysical Research Abstracts*, 8, EGU06–220.

[15] Glansdorff, P. and Prigogine, I. (1971) *Thermodynamic theory of structure, stability and fluctuations*. London.

[16] Nicolis, G. and Prigogine, I. (1977) *Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuation*. New York etc.: John Wiley and Sons.