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Abstract 2. Experimental techniques

Laboratory investigations based on guided ion beamWe study the chemical reactivity and microscopic
mass spectrometric techniques, coupled to theatetic mechanisms of charged particles by using tandem
interpretations by quantum chemistry, are reportedmass spectrometers, which allow selection and
to unravel new chemical mechanisms leading to themanipulation of both reactant and product ions. We
synthesis of organic molecular species in planetarycan estimate absolute values of reactive cross
atmospheres. In particular we have focused oursections as a function of the collision energy and
attention on ionic mechanisms for the growth of branching ratios (from which rate constant valums c
aromatic and polyaromatic hydrocarbons by be inferred). When carried out on large molecules,
association of pre-formed building blocks. Our such studies pose several experimental and
studies can help planetologists to propose moaels f computational problems related to the increased
explaining the observational evidence of heavy number of degrees of freedom. A complementary
molecular organic species in the ionosphere ofiTita experimental and theoretical approach is the key to
obtain reliable information on reaction mechanisms

1. Introduction [6-8].

Laboratory studies on the chemistry of planetary 3. Results and discussion
atmospheres and interstellar medium have been

historically focussed on small molecules. Due to Several mechanisms have been suggested for the
advances in infrared/microwave astronomy and to thegrowth  of large organic molecules under
settlement of space missions to outer planets,extraterrestrial conditions based on singly charf@éd
recently the attention has shifted towards larger and even multi-charged cations [10] and the idea is
molecules, mostly of organic nature. put forward that complex molecules build up by
Due to the tremendous complexity of its chemistry, association of pre-formed building blocks. In these
the Titan's ionosphere is the most pertinent exampl of polyaromatic hydrocarbons great progress has
showing the importance of good chemical models for been made in the knowledge of synthetic
the interpretation of Cassini data. Heavy ions with mechanisms based on radical and neutral reactions
masses over 100 amu have been detected irf11], while much less is known about ionic routes.
significant amounts into the Titan’s ionosphere In the recent past we have explored ionic
below 1200 km [1]. Possible chemical structures mechanisms for the growth of larger molecules
include PAHs, nitrile aromatic polymers [2], starting from phenyl cations [7, 8]. Here we repmnt
fullerenes [3] and polyphenyls [4] and such heavy new measurements about the reactivity of the naphty
particles have been proposed to act as seeds fogation GoH," with benzene. We have observed the
aerosols formations [S]. In spite of several labena  growth of hydrocarbon ions via C-C bond forming
investigations, new experimental and theoreticg# da reactions and a typical mass spectrum of prodscts i
: A . +
between thein st observations. of the Cassini 10" in Figure 1. The condensation addugHG'
. for which the most plausible structure is protodate
orbiter and the proposed models [5]. phenylnaphthalene, is observed as the most abundant
product in the absence of internal excitation af th
reacting GgH," cation, at the smallest collision
energies accessible with our experimental set-up fo



this system and with a sufficient pressure of baaze
in the scattering cell to allow for -collisional
stabilization. Other products are the ionsgHG'
(n=10-12) coming from H and Jelimination from
the adduct and the 8,0 ion formally
corresponding to a Gielimination.
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Figure 1: MS spectra of products from the reactibn
CioH7" with CgHe.
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