
Solar Wind influences on 
Critical Behavior of the 

Terrestrial Magnetosphere 

J. Wanliss (1), V. Uritsky (2) and J. Weygand (3) 
 (1) Presbyterian College, South Carolina, USA, (2) 
University of Calgary, Canada, (3), University of 
California, Los Angeles, USA, (jawanliss@presby.edu / 
Fax: + 1-864-833-8993)  
Abstract 

Spatiotemporal activity in the high-latitude terrestrial 
magnetosphere exhibits signatures of self-organized 
criticality (SOC), a robust multiscale stochastic 
regime observed in driven nonlinear systems with 
many coupled degrees of freedom. Here, we examine 
signatures of avalanching and multiscale behavior in 
the dynamics of geomagnetic disturbances at low-
latitudes, and compare these with the solar wind 
driver. We examine the burst lifetime distribution 
functions of solar wind coupling functions over solar 
minimum and maximum and find clear power-law 
exponents for different activity thresholds. Ensemble 
average dynamics of activity bursts in the low-
latitude fluctuations are scale-free and are 
characterized by consistent values of critical 
spreading scaling exponents. This suggests that the 
inner magnetosphere operates in a nonequilibrium 
critical state possibly associated with SOC-like 
conditions in the solar–terrestrial system.  

1. Introduction 
Although physical mechanisms of individual activity 
bursts in the inner magnetosphere have been 
investigated in numerous case studies, little is known 
about ensemble-averaged statistical properties of 
these events. The necessity of such statistical analysis 
is rooted in the fact that in general, nonlinear systems 
with multiple spatially distributed sources of 
instability cannot be completely characterized in 
deterministic terms. A significant portion of 
information on the dynamics of such systems, which 
can be extracted by appropriate statistical-physical 
methods of analysis, is contained in multiscale 
correlations of non-Gaussian random variables.  

Magnetospheric indices such as AE (auroral 
electrojet) have proven useful to elucidate statistical 
and other properties of the solar wind-magnetosphere 
interaction [1-4]. Freeman et al. [4] examined the AE 
indices to test for evidence that the magnetosphere is 
a self-organized and critical system. Since a 
component of the AE indices is strongly related to 
the solar wind driving function VBs [5], where V is 
the solar wind speed and Bs is the rectified 
southward interplanetary magnetic field (IMF) 
component, they considered the possibility that the 
solar wind, rather than the magnetosphere, was the 
source of the scale-free properties. They found that 
the scale-free properties of the index very closely 
followed the scale-free properties of the solar wind, 
namely the ε-parameter, related to solar wind power. 
This indicated the possibility that the scale-free 
properties of AE had their origin in the solar wind. 
Uritsky et al. [3] demonstrated that the activity bursts 
in AE and solar wind fluctuations have different 
dynamical critical scaling features and therefore 
asserted that the solar wind cannot be responsible for 
the critical behavior of the magnetosphere on 
timescales shorter than 3.5 hours. 

Here we follow the analysis of Freeman et al. [4], but 
for the SYM-H index rather than the high-latitude 
AE indices.  SYM-H is a global low-latitude index, 
mainly related to magnetospheric fluctuations in the 
ring current. We examine the scale-free burst lifetime 
distributions of SYM-H and compare them to the 
distributions from contemporaneous solar wind 
observations. This provides opportunity to evaluate 
the extent to which scale-free properties of the SYM-
H burst lifetime distributions originate in solar wind 
rather than directly via inner magnetospheric 
processes – those responsible for the bulk of the 
SYM-H fluctuations.  

Another way to test for critical behavior is 
examination of so-called dynamic critical scaling 
exponents. Critical behavior in equilibrium systems 
is characterized by the propagation of long-range 
correlations through the system through fine-tuning 
of a control parameter. This shows that near the 
critical point, various systems tend to produce long-
range scale-free correlations with universal statistical 
properties. The most familiar setting for discussion of 
critical system reconfigurations is phase transitions 
found in thermodynamic equilibrium.  

Dickman [6] and Muñoz et al. [7] developed a theory 
to characterize dynamical properties of critical 
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reconfigurations – the so-called avalanches [8] – 
occurring in a general class of nonlinear systems with 
many coupled degrees of freedom. It has been 
predicted that if N(τ) is the average number of active 
avalanche sites (average area of excitation in the 
continuum limit), where  τ  is the delay time 
measured from the initiation of each avalanche, then 
close to the critical point, and for delay times less 
than the time-scale introduced by finite-size effects,   
Similarly, if Ps(τ) is the probability that an avalanche 
survives by this time, then   The power law 
exponents η and δ are called spreading-exponents [7]. 
One can also measure the size S of each avalanche, 
which is the total number of active sites contributing 
to the reconfiguration, and its lifetime T. In a 
nonequilibrium critical state such as SOC, there 
exists a relationship between the avalanche size and 
avalanche lifetime. Using the definition of   and  , it 
is easy to show that the average number of active site 
in the surviving runs which produced avalanches 
with   scales as  . The characteristic size  of the event 
described by this lifetime is given by the time 
integral of this quantity, and therefore   (see [7] for 
more details). Scaling laws similar to this expression 
are called scaling relations and play a central part in 
quantitative analysis of nonequilibrium critical 
systems [6]. 

2. Analysis 
In a physical system the time interval between two 
“events” is called a waiting-time, for instance, the 
time between avalanches. Various definitions could 
be used, for example the time interval between event 
triggering [9], the time interval between maxima in 
intensity [10], the time interval from the end of a 
burst and the start of the next one [11], or the time 
interval when intensity fluctuations are above a given 
intensity [3]. We will label these respectively as the 
waiting-times, the interpeak, quiet, and burst 
lifetimes. If there is a lack of a characteristic time 
scale the probability densities vary with power law 
relations  

                                                         

where γ is the scaling constant, and τ is the time 
length during which fluctuations follow one of the 
above time scale definitions. In this paper we 
consider the burst lifetimes with constant thresholds 
as defined by Freeman et al. [3]. A constant 
threshold may be used since if the system producing 

the signal is in a SOC state the gradient of the power-
law portion of the burst lifetime distribution will be 
independent of the threshold level [12]. To properly 
evaluate the scaling exponent we must adopt an apt 
condition for the size ∆i of the ith bin. Since we 
expect the burst lifetime distribution to be an inverse 
power law, bins of equal size will result in those 
corresponding to large times to collect only a small 
amount of data, resulting in an unbalanced weight 
and unreliable calculation of the power law exponent. 
For this reason P(τ) was calculated by adopting bin 
sizes that are equal in logarithm space. That is, ln(τi)-
ln(τi-1) is constant, where τi and τi-1 are the centers of 
consecutive bins. The size of the ith bin, ∆i=τi - τi-1, 
will compensate for the decrease in the density of the 
data. The probability density for each bin is given by 

                                                     

where ni is the number of data points in the ith bin, 
and N is the total number of lifetimes computed from 
the original signal X(t). 

In this paper X(t)={SYM-H, SYM-H*, VBs, ε, B, ρ}, 
where VBs is defined above and 

                                                                                               

with IMF components Bx, By, and Bz in GSM 
coordinates; ε is expressed in Watts when V is in 
km/s and B is in nanoTesla , and plasma density ρ is 
in m-3. Solar wind data were interpolated with 1 
minute cadence for comparison with SYM-H. A 
relatively complete record of the solar wind data is 
available from 1995 onwards. The solar wind records 
are constructed from available satellite data from 
solar wind monitors. The key parameter database 
from the GEOTAIL, WIND, and ACE spacecraft was 
used to construct this time series on a month-by-
month basis. The key parameter database for the 
above satellites was consulted, and when there was 
more than one satellite sampling the solar wind, data 
from the satellite was selected that had the fewest 
gaps. Here we analyze data around solar minimum 
(1998) and maximum (2003). The SYM-H records are 
from the World Data Center, Japan.  
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For each dataset a set of thresholds was compiled that 
corresponded to the 10, 25, 50, 75, and 90 percentiles 
of the cumulative probability distribution of the 
respective series. These thresholds were set to test the 
original assumption that the power law slopes are 
threshold independent. The shape of the distributions 
for VBs, and ε. 

During solar maximum the scaling properties of low-
latitude magnetosphere, whose output is recorded by 
SYM-H, is not purely a direct response to the scale-
free properties of the solar wind but is due to inherent 
properties of the inner magnetosphere. This is most 
clearly seen by Figure 2, summarized in Table 1.  

These results are interesting but, as mentioned in the 
Introduction, we have other avenues also to study 
critical behavior, for instance the theory of 
nonequilibrium systems and dynamic critical scaling 
[6,7].  

 

 

Figure 1: Waiting time distributions, from top to 
bottom of total magnetic field B, number density, 
SYM-H. The left column shows results for solar 
minimum (1998), and the right column for solar 

maximum (2003). The percentiles are color coded. 

The nonequilibrium theory predicts that if N(τ) is the 
average number of active avalanche sites (average 
area of excitation in the continuum limit), where  τ  is 
the delay time measured from the initiation of each 
avalanche, then close to the critical point, and for 
delay times less than the time-scale introduced by 

finite-size effects, .ητ∝N  Similarly, if Ps(τ) is the 
probability that an avalanche survives by this time, 
then .δτ −∝sP  The power law exponents η and δ 
are called spreading-exponents [7 ]. 
 
 
Table 1: Scaling exponents obtained from the 50th 
percentile waiting time distributions. 

Parameter 1995-1998 2000-2003 
VBs 1.30±0.08 1.54±0.07 
ε  1.32±0.09 1.59±0.08 
SYM-H 1.24±0.06 1.29±0.05 

 

Figure 2: Comparison of the best fit functions for 
1995–2005 (colored lines) to the burst lifetime 
distribution functions for SYM-H (red circles), ε 
(green squares), and VBs (blue triangles). 

One can also measure the size S of each avalanche, 
which is the total number of active sites contributing 
to the reconfiguration, and its lifetime T. In a 
nonequilibrium critical state such as SOC, there 
exists a relationship between the avalanche size and 
avalanche lifetime. Using the definition of δ  and η , 
it is easy to show that the average number of active 
site in the surviving runs which produced avalanches 
with τ>T  scales as δητ + . The characteristic size 



S of the event described by this lifetime is given by 
the time integral of this quantity, and therefore 

δη++1~ TS  (see [7] for more details). Scaling laws 
similar to this expression are called scaling relations 
and play a central part in quantitative analysis of 
nonequilibrium critical systems.  
 
The best-fit critical scaling exponents, calculated in a 
least-squares sense, were 008.0263.0 ±=η  and 

.004.0416.0 ±=δ Solar-wind exponents do not 
exist in our data set, as there are no scaling regions. 
When they exist, the dynamic critical exponents can, 
to some extent, be related theoretically with 
avalanche scaling exponents. The latter are calculated 
from the probability distributions of avalanche sizes 
and lifetimes. We approximated these distributions 
by power laws with exponential cutoffs  
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The latter account for deviations from self-similar 
statistics at largest scales which occurs because of the 
paucity of large space storms with these largest 
timescales. In Figure 3 we have plotted these 
distributions for one of the thresholds. Table 2 
presents the power law exponents and other fitting 
parameters calculated by a least squares fit of the 
probability distributions for all studied thresholds; 
they were robust irrespective of threshold used.  
 
Table 2: Scaling exponents obtained from the 50th 
percentile waiting time distributions. 

Percentile tS tT 
90 1.14±0.03 1.30±0.04 
50 1.09 ±0.04 1.11 ±0.05 
10 1.13 ±0.03 1.26 ±0.03 

 

The best-fit critical exponent calculated of size 
versus lifetime was .022.0705.1 ± As mentioned 
previously, in critical avalanching systems, the size 
and lifetimes should be related as δη++∝ 1TS . 
Again, we have found that the experimentally 
determined relationship between avalanche size and 
lifetime is near the theoretical value predicted for this 
state ( 063.0679.11 ±=++ δη ). 

Figure 3: Comparison of the best fit functions for 
1995–2005 (colored lines) to the burst lifetime 
distribution functions for SYM-H (red circles), ε 
(green squares), and VBs (blue triangles). 

6. Summary and Conclusions 
The waiting time study finds that SYM-H burst 
lifetime distributions always show power law scaling 
with a similar scaling exponent during solar 
minimum and maximum; this is a robust feature 
suggestive of a SOC generating mechanism. During 
solar minimum the critical scaling exponents 
obtained for SYM-H, VBs and ε  were essentially the 
same. However, during solar maximum they were 
dissimilar. This is a surprising result, since intuitively 
one might expect more direct coupling of the 
statistical behavior of SYM-H and the solar wind 
during solar maximum.  

For the dynamic critical scaling study we find broad-
band scaling in the dynamics of the SYM-H index 
which is distinct from that in the solar wind drive. 
Irrespective of its physical interpretation, this 
observation adds a valuable piece of information to 
the existing picture of the solar wind–magnetosphere 
interaction by revealing its multiscale nonlinearity 
(our statistics show that there are no time scales at 
which the magnetospheric response is linear). It can 
also be used for validating existing and future ring 
current models in terms of their ability to correctly 
represent the cross-scale coupling effects in this 
system. The second, so far less solid level of results 
is our demonstration of the possibility that the 
multiscale dynamics of the ring current system, as 
reflected by SYM-H, is a result of its cooperative 
behavior governed by a specific statistical principle.  
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