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Abstract

Spatiotemporal activity in the high-latitude terrestrial
magnetosphere exhibits signatures of self-organized
criticality (SOC), a robust multiscale stochastic
regime observed in driven nonlinear systems with
many coupled degrees of freedom. Here, we examine
signatures of avalanching and multiscale behavior in
the dynamics of geomagnetic disturbances at low-
latitudes, and compare these with the solar wind
driver. We examine the burst lifetime distribution
functions of solar wind coupling functions over solar
minimum and maximum and find clear power-law
exponents for different activity thresholds. Ensemble
average dynamics of activity bursts in the low-
latitude fluctuations are scale-free and are
characterized by consistent values of critical
spreading scaling exponents. This suggests that the
inner magnetosphere operates in a nonequilibrium
critical state possibly associated with SOC-like
conditions in the solar—terrestrial system.

1. Introduction

Although physical mechanisms of individual activity
bursts in the inner magnetosphere have been
investigated in numerous case studies, little is known
about ensemble-averaged statistical properties of
these events. The necessity of such statistical analysis
is rooted in the fact that in general, nonlinear systems
with multiple spatially distributed sources of
instability cannot be completely characterized in
deterministic terms. A significant portion of
information on the dynamics of such systems, which
can be extracted by appropriate statistical-physical
methods of analysis, is contained in multiscale
correlations of non-Gaussian random variables.

Magnetospheric indices such as AE (auroral
electrojet) have proven useful to elucidate statistical
and other properties of the solar wind-magnetosphere
interaction [1-4]. Freeman et al. [4] examined the AE
indices to test for evidence that the magnetosphere is
a self-organized and critical system. Since a
component of the AE indices is strongly related to
the solar wind driving function VBs [5], where V is
the solar wind speed and Bs is the rectified
southward interplanetary magnetic field (IMF)
component, they considered the possibility that the
solar wind, rather than the magnetosphere, was the
source of the scale-free properties. They found that
the scale-free properties of the index very closely
followed the scale-free properties of the solar wind,
namely the e-parameter, related to solar wind power.
This indicated the possibility that the scale-free
properties of AE had their origin in the solar wind.
Uritsky et al. [3] demonstrated that the activity bursts
in AE and solar wind fluctuations have different
dynamical critical scaling features and therefore
asserted that the solar wind cannot be responsible for
the critical behavior of the magnetosphere on
timescales shorter than 3.5 hours.

Here we follow the analysis of Freeman et al. [4], but
for the SYM-H index rather than the high-latitude
AE indices. SYM-H is a global low-latitude index,
mainly related to magnetospheric fluctuations in the
ring current. We examine the scale-free burst lifetime
distributions of SYM-H and compare them to the
distributions from contemporaneous solar wind
observations. This provides opportunity to evaluate
the extent to which scale-free properties of the SYM-
H burst lifetime distributions originate in solar wind
rather than directly via inner magnetospheric
processes — those responsible for the bulk of the
SYM-H fluctuations.

Another way to test for critical behavior is
examination of so-called dynamic critical scaling
exponents. Critical behavior in equilibrium systems
is characterized by the propagation of long-range
correlations through the system through fine-tuning
of a control parameter. This shows that near the
critical point, various systems tend to produce long-
range scale-free correlations with universal statistical
properties. The most familiar setting for discussion of
critical system reconfigurations is phase transitions
found in thermodynamic equilibrium.

Dickman [6] and Mufioz et al. [7] developed a theory
to characterize dynamical properties of critical



reconfigurations — the so-called avalanches [8] -
occurring in a general class of nonlinear systems with
many coupled degrees of freedom. It has been
predicted that if N(t) is the average number of active
avalanche sites (average area of excitation in the
continuum limit), where 1t is the delay time
measured from the initiation of each avalanche, then
close to the critical point, and for delay times less
than the time-scale introduced by finite-size effects,
Similarly, if Ps(t) is the probability that an avalanche
survives by this time, then The power law
exponents 1 and d are called spreading-exponents [7].
One can also measure the size S of each avalanche,
which is the total number of active sites contributing
to the reconfiguration, and its lifetime T. In a
nonequilibrium critical state such as SOC, there
exists a relationship between the avalanche size and
avalanche lifetime. Using the definition of and , it
is easy to show that the average number of active site
in the surviving runs which produced avalanches
with scales as . The characteristic size of the event
described by this lifetime is given by the time
integral of this quantity, and therefore (see [7] for
more details). Scaling laws similar to this expression
are called scaling relations and play a central part in
quantitative analysis of nonequilibrium critical
systems [6].

2. Analysis

In a physical system the time interval between two
“events” is called a waiting-time, for instance, the
time between avalanches. Various definitions could
be used, for example the time interval between event
triggering [9], the time interval between maxima in
intensity [10], the time interval from the end of a
burst and the start of the next one [11], or the time
interval when intensity fluctuations are above a given
intensity [3]. We will label these respectively as the
waiting-times, the interpeak, quiet, and burst
lifetimes. If there is a lack of a characteristic time
scale the probability densities vary with power law
relations

P(zr)~7"

where y is the scaling constant, and r is the time
length during which fluctuations follow one of the
above time scale definitions. In this paper we
consider the burst lifetimes with constant thresholds
as defined by Freeman et al. [3]. A constant
threshold may be used since if the system producing

the signal is in a SOC state the gradient of the power-
law portion of the burst lifetime distribution will be
independent of the threshold level [12]. To properly
evaluate the scaling exponent we must adopt an apt
condition for the size A; of the ith bin. Since we
expect the burst lifetime distribution to be an inverse
power law, bins of equal size will result in those
corresponding to large times to collect only a small
amount of data, resulting in an unbalanced weight
and unreliable calculation of the power law exponent.
For this reason P(z) was calculated by adopting bin
sizes that are equal in logarithm space. That is, In(z)-
In(z.1) is constant, where 7 and 7_; are the centers of
consecutive bins. The size of the ith bin, Ai=75 - 7.,
will compensate for the decrease in the density of the
data. The probability density for each bin is given by

P(r) =n,/NA,

where n; is the number of data points in the ith bin,
and N is the total number of lifetimes computed from
the original signal X(t).

In this paper X(t)={SYM-H, SYM-H*, VB;, ¢ B, p},
where VB; is defined above and

£=2x10"-VB?sin*(0/2),
B® =B} +B; +B’,
¢ =tan"(B,/B,),

with IMF components B,, B,, and B, in GSM
coordinates; ¢ is expressed in Watts when V is in
km/s and B is in nanoTesla , and plasma density p is
in m*. Solar wind data were interpolated with 1
minute cadence for comparison with SYM-H. A
relatively complete record of the solar wind data is
available from 1995 onwards. The solar wind records
are constructed from available satellite data from
solar wind monitors. The key parameter database
from the GEOTAIL, WIND, and ACE spacecraft was
used to construct this time series on a month-by-
month basis. The key parameter database for the
above satellites was consulted, and when there was
more than one satellite sampling the solar wind, data
from the satellite was selected that had the fewest
gaps. Here we analyze data around solar minimum
(1998) and maximum (2003). The SYM-H records are
from the World Data Center, Japan.



For each dataset a set of thresholds was compiled that
corresponded to the 10, 25, 50, 75, and 90 percentiles
of the cumulative probability distribution of the
respective series. These thresholds were set to test the
original assumption that the power law slopes are
threshold independent. The shape of the distributions
for VB, and &.

During solar maximum the scaling properties of low-
latitude magnetosphere, whose output is recorded by
SYM-H, is not purely a direct response to the scale-
free properties of the solar wind but is due to inherent
properties of the inner magnetosphere. This is most
clearly seen by Figure 2, summarized in Table 1.

These results are interesting but, as mentioned in the
Introduction, we have other avenues also to study
critical behavior, for instance the theory of
nonequilibrium systems and dynamic critical scaling
[6,7].
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Figure 1: Waiting time distributions, from top to
bottom of total magnetic field B, number density,
SYM-H. The left column shows results for solar
minimum (1998), and the right column for solar
maximum (2003). The percentiles are color coded.

The nonequilibrium theory predicts that if N(t) is the
average number of active avalanche sites (average
area of excitation in the continuum limit), where z is
the delay time measured from the initiation of each
avalanche, then close to the critical point, and for
delay times less than the time-scale introduced by

finite-size effects, N oc 7”7, Similarly, if Py(z) is the
probability that an avalanche survives by this time,

then P, oc 7%, The power law exponents # and J
are called spreading-exponents [7 ].

Table 1: Scaling exponents obtained from the 50
percentile waiting time distributions.

Parameter 1995-1998 2000-2003

VB, 1.30+0.08 1.54+0.07

€ 1.32+0.09 1.59+0.08

SYM-H 1.24+0.06 1.29+0.05
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Figure 2: Comparison of the best fit functions for
1995-2005 (colored lines) to the burst lifetime
distribution functions for SYM-H (red circles), ¢

(green squares), and VBs (blue triangles).

One can also measure the size S of each avalanche,
which is the total number of active sites contributing
to the reconfiguration, and its lifetime T. In a
nonequilibrium critical state such as SOC, there
exists a relationship between the avalanche size and

avalanche lifetime. Using the definition of ¢ and 7,

it is easy to show that the average number of active
site in the surviving runs which produced avalanches

with T > 7 scales as 77" . The characteristic size



S of the event described by this lifetime is given by
the time integral of this quantity, and therefore

S ~TH" (see [7] for more details). Scaling laws
similar to this expression are called scaling relations
and play a central part in quantitative analysis of
nonequilibrium critical systems.

The best-fit critical scaling exponents, calculated in a
least-squares sense, were 77 =0.263+0.008 and

0 =0.416+0.004. Solar-wind exponents do not
exist in our data set, as there are no scaling regions.
When they exist, the dynamic critical exponents can,
to some extent, be related theoretically with
avalanche scaling exponents. The latter are calculated
from the probability distributions of avalanche sizes
and lifetimes. We approximated these distributions
by power laws with exponential cutoffs

P(S) oc S exp(=S/S,)
P(T)ocT " exp(-T/T,),

The latter account for deviations from self-similar
statistics at largest scales which occurs because of the
paucity of large space storms with these largest
timescales. In Figure 3 we have plotted these
distributions for one of the thresholds. Table 2
presents the power law exponents and other fitting
parameters calculated by a least squares fit of the
probability distributions for all studied thresholds;
they were robust irrespective of threshold used.

Table 2: Scaling exponents obtained from the 50
percentile waiting time distributions.

Percentile ts tr

90 1.1440.03 1.30+0.04
50 1.09 £0.04 1.11 +£0.05
10 1.13 £0.03 1.26 +£0.03

The best-fit critical exponent calculated of size
versus lifetime was 1.705+ 0.022. As mentioned
previously, in critical avalanching systems, the size

and lifetimes should be related as S oc T*7*
Again, we have found that the experimentally
determined relationship between avalanche size and
lifetime is near the theoretical value predicted for this
state (1+7+ 6 =1.679 £0.063).
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Figure 3: Comparison of the best fit functions for
1995-2005 (colored lines) to the burst lifetime
distribution functions for SYM-H (red circles), ¢
(green squares), and VBs (blue triangles).

6. Summary and Conclusions

The waiting time study finds that SYM-H burst
lifetime distributions always show power law scaling
with a similar scaling exponent during solar
minimum and maximum; this is a robust feature
suggestive of a SOC generating mechanism. During
solar minimum the critical scaling exponents
obtained for SYM-H, VB; and ¢ were essentially the
same. However, during solar maximum they were
dissimilar. This is a surprising result, since intuitively
one might expect more direct coupling of the
statistical behavior of SYM-H and the solar wind
during solar maximum.

For the dynamic critical scaling study we find broad-
band scaling in the dynamics of the SYM-H index
which is distinct from that in the solar wind drive.
Irrespective of its physical interpretation, this
observation adds a valuable piece of information to
the existing picture of the solar wind—magnetosphere
interaction by revealing its multiscale nonlinearity
(our statistics show that there are no time scales at
which the magnetospheric response is linear). It can
also be used for validating existing and future ring
current models in terms of their ability to correctly
represent the cross-scale coupling effects in this
system. The second, so far less solid level of results
is our demonstration of the possibility that the
multiscale dynamics of the ring current system, as
reflected by SYM-H, is a result of its cooperative
behavior governed by a specific statistical principle.
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