

# K-Ar ages and shock effects in lunar meteorites

V. A. S. M. Fernandes (1,2), J. P. Fritz (3), K. Wünnemann (3) and U. Hornemann (4)

(1) Space Research & Planetary Sci., Univ. of Bern, Bern, Switzerland, (2) Univ. Manchester, Manchester, UK, (3) Museum für Naturkunde, Leibniz Institut an der HU-Berlin, (4) Ernst Mach Institut für Kurzzeitdynamik, Fraunhofer Institut, Germany (veraafernandes@yahoo.com)

## 1. Introduction

The lunar crust and its dominant features formed during the first 700 Ma of our Solar System, thus covering a time not recorded by terrestrial rocks. This permits the determination of the lunar crater production rate - the most important chronological standard for dating planetary surfaces in the inner Solar System. The age of impact events on the lunar surface can be determined by measuring different isotopic systems in rocks. In contrast to  $^{147}\text{Sm}/^{143}\text{Nd}$  and  $^{87}\text{Rb}/^{87}\text{Sr}$  ages, which are used to date the solidification of the rock (e.g. basalt), the  $^{40}\text{Ar}-^{39}\text{Ar}$  dating technique can also determine the resetting ages due to thermal events induced by impacts. These thermal/impact events can in some cases only cause partial Ar-loss (where only the low temperature argon release steps are affected). Therefore this dating technique can be applied to a broad range of rock types (i.e. not only impact melts). This is particularly relevant to the large number of lunar meteorites considered as more representative of the average lunar surface, compared to the Apollo and Luna mission samples which were limited to equatorial and nearside landing sites. Here we investigate on the influence of shock pressure and temperature on the  $^{40}\text{Ar}$  budget of lunar basaltic meteorites.

## 2. Methods

A gabbro from Grass Valley, California, U.S.A., containing calcium-rich plagioclase (An<sub>94</sub>) was experimentally shocked to pressures of 20, 24, 28 and 36 GPa. The shock reverberation experiments were carried out at the Ernst Mach Institute in Freiburg, Germany [1]. The recovered samples were studied macroscopically using optical microscopy and Raman spectroscopy. Argon ages were determined on irradiated samples by measuring the Ar released during step heating experiments. Partial and complete resetting of K-Ar system was determined by comparing these results with literature crystallization ages obtained by other isotopic chronometers: Sm/Nd, Pb/Pb, Th/Pb and U-Pb, (Tab. 1) [2-18].

## 3. Results

These are the first mineralogical investigations on experimentally shocked rocks containing Ca-rich plagioclase with a composition relevant to lunar rocks.

Plagioclase shocked to 1) 20 GPa shows undulatory extinction, 2) 24 GPa is almost completely isotropic, and 3) 28 and 36 GPa is completely transformed into maskelynite. Using the plagioclase with An<sub>94</sub> as an experimentally calibrated barometer allows to determine the shock pressures recorded in lunar rocks (Table 1). The shock pressures are then compared with radiogenic ages.

### 3.1 Crystallisation and thermal events preserved in lunar basaltic meteorites

Asuka 881757, Yamato 793169 and MIL 05035 are thought to be paired based on similar chemistry and petrogenesis. Crystallisation age obtained by Sm/Nd, Pb/Pb, Rb/Sr, Th/Pb, U/Pb and Ar/Ar [2] for Asuka 881757 is  $3.846 \pm 0.080$  Ga. This age is the same within error to that obtained using Ar/Ar,  $3.726 \pm 0.063$  Ga [3]. Previous crystallisation age obtained using Pb/Pb, Sm/Nd, Th/Pb, U-Pb and Ar/Ar [4] for Yamato 793169 is  $3.858 \pm 0.098$  Ga. Recent Ar/Ar work by [3] report an average on ages obtained on bulk and plagioclase of  $3.751 \pm 0.085$  Ga which is indistinguishable from those obtained by other systems. A younger age obtained for Yamato 793169 glass separates of 0.203 Ga suggests a more recent thermal event. Sm/Nd and Rb/Sr radiometric age determination for MIL 05035 by [5] suggest a crystallization age of  $3.850 \pm 0.051$  Ga which is indistinguishable from that obtained by Ar/Ar  $3.878 \pm 0.046$  Ga for two bulk samples [3]. These authors also reported that during argon release the low temperatures show a maximum age of a later thermal event at  $1.638 \pm 0.098$  Ga.

A crystallisation age for LAP 02205 of  $2.980 \pm 0.036$  Ga was determined using Ar/Ar, Sm/Nd, Rb/Sr and U/Pb [6-8]. This age is the same as that obtained for Ar/Ar bulk analyses,  $2.985 \pm 0.016$  Ga [3 11].

Basaltic lunar meteorites NWA 2977 (olivine-rich cumulate gabbro) and NWA 3160 (fine-grained, olivine-phyric basalt with minor attached breccia matrix) belong to the NWA773 clan. Presently there is a Sm/Nd crystallization age of  $3.10 \pm 0.05$  Ga [9] for NWA 2977. The Ar/Ar analyses on bulk, pyroxene and plagioclase separates obtained by [10] suggest that the system has been disturbed likely by a thermal event at  $<2.6$  Ga. For the breccia NWA

3160 there is currently only Ar/Ar data reported by [10] and suggest a disturbed system. Bulk and basalt samples show a complex release and a calculated age of  $\sim 2.65$  Ga. The breccia on the other hand shows that the low temperature steps of the release pattern suggest a partial degassing at  $< 2.8$  Ga, and at intermediate and high temperature there is an increase in apparent ages ( $\sim 43\%$  of the total  $^{39}\text{Ar}$ -release) suggesting an age of  $3.89 \pm 0.59$  Ga.

Rb/Sr and Sm/Nd age reported for NWA 032/479 is  $2.980 \pm 0.036$  Ga [11], and [3] reported a slightly younger age at  $2.917 \pm 0.059$  Ga.

For NWA 4898 the reported crystallisation age was determined using Rb/Sr [12] and suggest an age of  $3.600 \pm 0.059$  Ga. This age is within error the same as that determined by Ar/Ar  $3.536 \pm 0.020$  Ga [13].

Similarly, for NWA 4734 there is only Ar/Ar age determination which shows a release spectrum suggesting to be affected by  $^{39}\text{Ar}$  recoil. The total age calculated is  $2.74 \pm 0.02$  Ga. This age is indistinguishable from those obtained for NWA032/479 [14] and just slightly younger than the Ar age obtained or basalt LAP 02205 [3].

For Dhofar 287 a crystallisation age of  $3.46 \pm 0.03$  Ga was determined by [15]. Ar/Ar age reported by [16] is  $3.136 \pm 0.086$  Ga. U/Pb analyses determined by [17] on phosphates suggest an age of  $3.34 \pm 0.20$  Ga which is intermediate between Sm/Nd and Ar/Ar ages.

Finally, radiometric ages for the basaltic breccia EET 96008 obtained using U/Pb ages on phosphates suggest an average age of  $3.518 \pm 0.553$  Ga [18]. Recent detailed Ar/Ar work on breccia, bulk and basalt fragments of the EET 96008 was able to discriminate different ages,  $3.755 \pm 0.342$  Ga,  $3.231 \pm 0.118$  Ga and  $2.650 \pm 0.086$  Ga [3], respectively. The bulk sample also suggests the maximum age for a more recent thermal event at  $0.631 \pm 0.020$  Ga.

#### 4. Discussion

Preliminary investigation show that 1) formation of maskelynite, e.g. in Asuka 881757 is not leading to a loss of Ar, and even impact melt bearing samples (EET 96008) are not completely reset. In contrast partial or complete resetting of Ar ages were observed in some meteorites shocked to relatively low pressures, e.g. Yamato 793169 shocked to 21-25 GPa. This indicates that Ar loss is not a result of weak to moderate shock pressures. The partial or total resetting of a rock K-Ar age depends on elevated temperatures for extended periods of time, e.g. in a hot ejecta blanket.

**Acknowledgements:** Funding provided by the Synthesis Programme (EU FP7) and the Helmholtz Alliance HA-203 “Planetary Evolution and life“ WP3200 is acknowledged. We

thank H. Schneider and H.-R. Knöfler for the preparation of experiment assemblies and for sample preparation, respectively. We are most grateful to T. Irving for providing samples of several of the meteorites. Also, we thank K. Ross, then at U.C. Berkeley and now at NASA-JSC, for introducing us to the Grass Valley gabbro, and H.-R. Wenk (U.C. Berkeley) for providing the rock sample.

**References:** [1] Müller W. F and Hornemann U. (1969) *Earth Planet. Sci. Lett.*, 1969; 3: 251-264; [2] Misawa et al. (1993) *GCA*, 57, 4687-4702; [3] Fernandes et al. (2009) *MaPS* 44, 805-821; [4] Torigoye-Kita et al. (1995); [5] Nyquist et al. (2007) *XXXVIII LPSC*, abst. #1702; [6] Rankenburg et al. (2007) *GCA*, 71, 2120-2135; [7] Nyquist et al. (2005) *XXXVI LPSC*, abst.# 1702; [8] Anand et al. (2006) *GCA*, 70, 246-264; [9] Nyquist et al (2009) 72<sup>nd</sup> *MetSoc*, abst.# 5347; [10] Burgess et al (2007) *XXXVIII LPSC*, abst.# 1603; [11] Borg et al (2009) *GCA*, 73, 3963-3980; [12] Gaffney et al. (2008) 1<sup>st</sup> *NLSI LSC*, abst.# 2064; [13] Fernandes et al (2009) *XL LPSC*, abst.# 1045; [14] Fernandes et al. (2003) *MaPS*, 58, 555-564; [15] Shih et al. (2002) *XXXIII LPSC*, abst.# 1344; [16] Fernandes et al 2008, Goldschmidt abst.# A264; [17] Terada et al (2008) *EPSL* doi:10.1016/j.epsl.2008.03.025; [18] Anand et al (2003) *MAPS* 38, 485-499.

**Table 1** Investigated lunar meteorites, including information on petrological type, shock metamorphic features, deduced shock pressures, and completely or partially reset Ar-ages.

| Name          | type | plag | shock pressure [GPa] | melt veins | reset Ar-age | partial loss |
|---------------|------|------|----------------------|------------|--------------|--------------|
| Asuka 881757  | b    | C    | >25                  | Yes        | No           | No           |
| Yamato 793169 | b    | B    | 21-25                | Yes        | No           | Yes          |
| MIL 05035     | b    | C    | >25                  | No         | No           | Yes          |
| LAP 02205     | b    | C    | >25                  | Yes        | No           | No           |
| NWA 032/479   | b    | n.d. | 20-35                | Yes        | No           | No           |
| NWA 4898      | b    | C    | >25                  | Yes        | No           | No           |
| NWA 4734      | b    | B    | 21-25                | No         | No           | No           |
| Dhofar 287-A  | b    | C    | >25                  | Yes        | Yes          | No           |
| NWA 2977      | b    | B    | 21-25                | Yes        | Yes          | Yes          |
| NWA 3160      | bb   | B    | 21-25                | Yes        | n.d.         | n.d.         |
| EET 96008     | bb   | A-C  | n.d.                 | n.d.       | No           | Yes          |

Type b = basalt, bb = basalt and breccia; shock features in plagioclase are: A = birefringent (i.e. plagioclase), B = partially isotropic, and C = completely isotropic (i.e. maskelynite); n.d.= not determined.