EPSC Abstracts Vol. 5, EPSC2010-366, 2010 European Planetary Science Congress 2010 © Author(s) 2010 # Nitrogen isotopes in early Titan's atmosphere A.A. Berezhnoy Sternberg Astronomical Institute, Moscow, Russia (ber@sai.msu.ru / Fax: +7-495-9328841) ### **Abstract** Molecular nitrogen could be produced on early Titan from NH₃·H₂O without significant changes in the isotopic composition of nitrogen and hydrogen. During NH, NH₂, and NH₃ photolysis almost all nitrogen remains in the atmosphere of Titan and ¹⁴N/¹⁵N ratio remains constant. Effects of fractionation of isotopes of nitrogen and hydrogen during collisions between comets and Titan are also negligible. Thus, early Titan was enriched by ¹⁵N isotope. #### 1. Introduction The most important mechanisms of changes of the isotopic composition of Titan's atmosphere include diffusive fractionation [8], sputtering [7], and chemical and escape fractionation [9]. Main mechanisms of nitrogen isotope fractionation are not so sufficient to be able to increase ¹⁵N/¹⁴N value on early Titan from the protosolar value on about 50 % to the present-day value, 1/183 [9]. It means that Titan was formed from icy planetesimals with incorporation of significant fraction of ices formed in dense cloud cores and enriched by ¹⁵N isotope [11]. However, influence of photochemical and impact processes on isotopic composition of Titan's atmosphere was not considered in details so far. # 2. Isotopic fractionation during NH, NH₂, and NH₃ photolysis Early Titan accumulated nitrogen in the form of $NH_3 \cdot H_2O$. Present N_2 -rich atmosphere of Titan could be created during photochemical reactions in the upper atmosphere, $NH_3 \cdot H_2O$ decomposition in interiors of Titan, and collisions between comets and Titan. Atmosphere of early Titan could contain both N_2 and NH_3 . Let us estimate the period of time required for transformation of early NH_3 -rich Titan's atmosphere to present N_2 -rich one. During first $T(NH_3, g) =$ 3×10^5 years after formation of Titan the temperature on its surface was higher than 250 K [4], it is suitable for existence of NH3 in the atmosphere. Masses of the current atmosphere M_{pr} and exosphere M_{ex} of Titan are equal to 3×10^{22} and 5×10^{10} g, respectively. The rate of NH3 photochemical destruction on early Titan need to be more than M_{pr} / T(NH3, g) = 10^{17} g/year. However, the intensity of UV-radiation of young Sun was just about 100 times higher than that of the present-day Sun [10]. This value of the intensity of UV-radiation corresponds to NH3 destruction rate on early Titan of about 100 M_{ex} τ_{ph} (NH3) $^{\sim}$ 3×10 14 g/year, where τ_{ph} (NH3) = 2×10 $^{-6}$ s $^{-1}$ is the NH3 photolysis rate on present-day Titan [3]. Thus, photochemical destruction of early Titan's NH3-atmosphere seems to be unfavorable. Velocities of photolysis-generated species can be estimated based on laws of energy and momentum conservations and knowing the flux of solar radiation [3] and photolysis cross sections available at http://amop.space.swri.edu. Then the most probable velocities of NH, NH₂ and N produced during NH₂, NH₃, and N₂ photolysis are 1.2, 0.6-0.8, and 5.5 km/s, respectively, while the escape velocity is 2.07 km/s for Titan. Thus, NH₃ photolysis did not change the isotopic composition of nitrogen on Titan because photolysis-generated NH and NH₂ species remain in the atmosphere. During NH photolysis additional fractionation of nitrogen isotopes can occur if all four conditions are valid simultaneously: 1) NH photolysis rate is higher that 10⁻⁵ s⁻¹; 2) ¹⁴NH and ¹⁵NH photolysis rates are quite different; 3) typical velocities of photolysisgenerated nitrogen atoms are higher than the Titan's escape velocity; 4) during NH photolysis significant amounts of nitrogen were lost. Simultaneous validity of all these conditions seems to be unrealistic. The observed D/H ratio on present Titan cannot be explained by isotopic fractionation of hydrogen during CH_4 photolysis. The D/H ratio on early Titan is estimated as $2.7 - 4.3 \times$ protosolar value [2]. Using the photolysis model [8], the ratio of photolysis rates of NH_2D u NH_3 equal to 0.71 [1], and N/C ratio assumed to be that of the solar value, 0.275, we found that early Titan was enriched by deuterium during NH_3 photolysis by about 10 % or less. Thus, NH_3 photolysis did not change significantly the isotopic composition of hydrogen. # 3. Isotopic fractionation during impact processes Collisions of comets with Titan can lead to additional enrichment of the atmosphere by heavy isotopes 15 N and D because the average C^{14} N/ C^{15} N, about 140, in comets less in 1.9 times than that of Earth [12] and the D/H ratio in comet Halley, $(31.6 \pm 3.4) \times 10^{-5}$ [6], higher in 12 times than that for Sun. Additional isotopic fractionation can occur during impact processes because impact-produced H₂, N₂, and CH₄ are able to escape from Titan's atmosphere while H₂O and NH₃ are delivered to the surface. Based on comparison between hydrodynamic and chemical time scales quenching of the chemical composition of impact-produced fireballs occur at about 800 - 1000 K and 10 - 1000 bars, respectively. For these temperatures and pressures H₂O and N₂ are main compounds, H2, CH4, and NH3 are minor compounds. Using the constant of isotopic exchange between CH₄ and H₂O [5] the D/H ratio in CH₄ less on about 10 % than that in H₂O at the quenching temperature of 1000 K. The difference between ¹⁴N/¹⁵N ratios in N₂ and NH₃ is even smaller because isotopic effects are usually proportional to ratios of masses of isotopes. High-temperature component of fireballs can escape the atmosphere. If Maxwell distribution is valid and main N-bearing compound in fireballs is atomic nitrogen than the atmosphere of Titan will be enriched by ¹⁵N isotope on 6, 7, and 7.6 % at 3000, 4000, and 5000 K, respectively. Thus, during impact processes we expect just weak enrichment of Titan by heavy isotope ¹⁵N. ## 4. Summary and Conclusions Effects of enrichment of Titan by ¹⁵N and D during NH₃ photolysis and comet impacts are negligible. These results can be considered as additional evidence of enrichment of early Titan by ¹⁵N and D isotopes in comparison with the Sun. ## Acknowledgements The author would like to thank V.A. Dorofeeva for helpful suggestions. This research was supported by RFBR grant 08-05-01070. ### References - [1] Cheng, B.-M., et al. Absorption cross sections of NH_3 , NH_2D , NHD_2 , and ND_3 in the spectral range 140-220 nm and implications for planetary isotopic fractionation, Astrophys. J., Vol. 647, pp. 1535-1542, 2006. - [2] Cordier, D., et al. Photochemical enrichment of deuterium in Titan's atmosphere: new insights from Cassini-Huygens, Astrophys. J., Vol. 689, pp. L61-L64, 2008. - [3] Huebner, W.F., et al. Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., Vol. 195, pp. 1-289, 291-294, 1992. - [4] Hunten, D.M., et al. Titan, IN Saturn, Univ. Arizona Press, pp. 671-759, 1984. - [5] Horibe, Y., Craig, H. D/H fractionation in the system methane–hydrogen–water, Geochim. Cosmochim. Acta., Vol. 59, pp. 5209–5217, 1995. - [6] Eberhardt, P., et al. The D/H and ¹⁸O/¹⁶O ratios in water from comet P/Halley, Astron. Astrophys., Vol. 302, pp. 301-316, 1995. - [7] Lammer, H., Bauer, S.J. Atmospheric mass loss from Titan by sputtering, Plan. Sp. Sci., Vol. 41, pp. 657-663, 1993. - [8] Lunine, J.L., et al. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane, Plan. Sp. Sci., Vol. 47, pp. 1291-1303, 1999. - [9] Mandt, K.E., et al. Isotopic evolution of the major constituents of Titan's atmosphere based on Cassini data, Plan. Sp. Sci., Vol. 57, pp. 1917–1930, 2009. - [10] Penz, T., et al. The influence of the solar particle and radiation environment on Titan's atmosphere evolution, Adv. Space Res., Vol. 36, pp. 241-250, 2005. - [11] Rodgers, S.D., Charnley, S.B., 2008. Nitrogen superfractionation in dense cloud cores, Mon. Not. R. Astron. Soc. Lett., Vol. 385, pp. L48–L52, 2008. - [12] Schulz, R., et al. Isotopic abundance in the CN coma of comets: Ten years of measurements, Plan. Sp. Sci., Vol. 56, pp. 1713-1718, 2008.