Secular redistributions of fluids on the Earth, Mars, Titan and others planets and satellites between opposite hemispheres in present epoch and their uniform mechanism

Yu.V. Barkin

Sternberg Astronomical Institute, celestial mechanics and gravimetry department, Moscow, Russian Federation (barkin@inbox.ru, 07-495-9328841)

Abstract. In some from my works it has been shown, that redistribution of fluid masses of a planet (the Earth) is carried out and is carefully and accurately controlled by the mechanism of the forced swing (oscillations) and drift of the core relatively to the deformable mantle. A gravitational influence of a moveable core leads to a redistribution of atmospheric, oceanic and other fluid masses between corresponding hemispheres of a planet in dependence from a direction and style of displacements of the center of mass of the core [1]. For some satellites the role of the core can play the internal shells separated with external shell (mantle, crust) by an oceanic layer (the Titan, Enceladus) or corresponding is viscous-elastic layers (Io, Mars, the Moon, etc.).

1 Latitudinal dependence of sea level rise in present (altimetry) epoch.

1.1 S-N secular ocean tide on the Earth. The secular drift of the centre of mass of the Earth in the direction of North Pole with velocity about 12-20 mm/yr has been predicted by author in 1995, and now has confirmed with methods of space geodesy. For example the DORIS data in period 1999-2008 let us to estimate velocity of polar drift in 5.24±0.29 mm/yr [1 - 3]. To explain this fundamental planetary phenomenon it is possible only, having admitted, that similar northern drift tests the centre of mass of the liquid core relatively to the centre of mass of viscous-elastic and thermodynamically changeable mantle with velocity about 2-3 cm/yr in present. The polar drift of the Earth core with huge superfluous mass results in slow increase of a gravity in northern hemisphere with a mean velocity about 1.4 µGal and to its decrease approximately with the same mean velocity in southern hemisphere. This conclusion-prediction has obtained already a number of confirmations in precision gravimetric observations fulfilled in last decade around the world. Naturally, a drift of the core is accompanied by the global changes (deformations) of all layers of the mantle and the core, by inversion changes of their tension states when in one hemisphere the tension increases and opposite on the contrary - decreases. Also it is possible that thermodynamically mechanism actively works with inversion properties of molting and solidification of materials at core-mantle boundary in opposite (northern – southern) hemispheres.

1.2 Atmospheric and oceanic inversion tides. The gravitational attraction of superfluous mass of the drifting to the North core (in 17 masses of the Moon) causes a planetary inversion tide of air masses of the Earth and its oceanic masses, from the southern hemisphere – to the northern hemisphere. On our theoretical estimations the mean atmospheric pressure in the northern hemisphere accrues with velocity about 0.17 mbar/yr and with similar negative velocity in southern hemisphere. Although mentioned estimations are draft the predicted phenomenon of a slow redistribution of air masses from the southern hemisphere in northern partially has already obtained confirmation according to the meteorological observations in period 1.4. 2002 - 1.4. 2005: 0.17-0.22 mbar/yr (northern hemisphere) and - 0.18 mbar/yr (southern hemisphere) (Slide 1). On the basis of modern data of satellite altimetry for 1993-2007 years we for the first time appreciate velocities of secular variations of the mean sea level in northern and southern hemispheres of the Earth which, as well as was supposed, appeared various. In the report the mechanisms of the revealed phenomena, their dynamic interrelation are discussed and an possible interpretation to the data of observations is given.

1.3. Contrast changes of mean sea levels in northern and southern hemispheres. The air masses slowly are transported from a southern hemisphere in northern. They form an original inversion secular atmospheric tide which existence proves to be true by the modern data of observations.
The gravitational attraction of the core which is displaced along a polar axis causes the similar tide of oceanic masses. The barometric effect of influence of atmospheric tide will result in reduction of expected secular oceanic tide. Really, an increase of mean atmospheric pressure in the northern hemisphere results in replacement of oceanic masses in the southern hemisphere.

<table>
<thead>
<tr>
<th></th>
<th>NH (mm/yr)</th>
<th>SH (mm/yr)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>Barkin, theory (2006)</td>
</tr>
<tr>
<td>0.1</td>
<td>1.3</td>
<td>1.3</td>
<td>Jin, Barkin, GPS observations (2007)</td>
</tr>
<tr>
<td>0.44±0.06</td>
<td>1.42±0.11</td>
<td></td>
<td>Kaftan et al., GPS observations (2009)</td>
</tr>
</tbody>
</table>

Only for this reason (on our model) the mean sea level in the northern hemisphere decreases with secular velocity -1.98 mm/yr. In turn a decrease of atmospheric pressure in the southern hemisphere results in an increase of the mean sea level in this hemisphere with velocity 1.43 mm/yr. Preliminary estimations have shown, that a oceanic inversion tide, caused by a gravitational attraction of the drifting core, gives the basic contribution to the phenomenon of secular variation of the mean sea level in N and S hemispheres (in northern hemisphere the mean sea level increases with velocity 3.01±0.17 mm/yr and in the southern hemisphere it decreases with velocity -2.18±0.12 mm/yr). On the sea level the slow deformation changes of a bottom of the ocean render the essential influence. This tectonic phenomenon is connected with global (planetary) changes of shapes of hemispheres of the Earth. The last have been predicted and described on the basis of developed geodynamic model of the core mantle forced oscillations and drift and revealed by methods of space geodesy (Slide 2). On the basis of these results the estimation of velocity of increase of the mean sea level because of deformations of ocean bottom in 0.55±0.26 mm/yr has been obtained. An analysis has shown that thermal factors play big role in secular change of sea level. Here we will accept conclusions of the last years that due to a heating of ocean layers and their expansion and due to melting of glaciers and other contributions of water masses in ocean its mean sea level rises with velocity about 0.83 mm/yr. Summarizing now all considered factors of increase of the sea level, we come to the important conclusion. In northern hemisphere the mean sea level of ocean increases with velocity about 2.45±0.32 mm/yr, and in a southern hemisphere the mean sea level increases with velocity about 0.67±0.30 mm/yr. This result give clear confirmation of existence in present epoch of the secular S-N oceanic tide. Observations on the coastal gauge stations confirm these predicted theoretical velocities [3]. Theoretical values of velocity of increase of global mean sea level of ocean thus has been estimated in 1.61±0.36 mm/yr that is close to value observed by coastal methods. Slides 3 and 4 illustrates also fundamental planetary phenomenon of dependence of rate of increasing of sea level from latitude. Theoretical curve of this dependence is described by formulas on the Slide 4 and obtain confirmations in coastal observations on gauge stations around the world ocean for define regions studied by Evreeva et al. (2006) (rhombuses and crosses on figures of slides 3 and 4). On the base of this curve we have obtain average values of global and hemispheric values of the mean sea level rise.

2. The mechanism of redistribution of fluid masses between southern and northern hemispheres on planets and satellites. The similar mechanism of redistribution of fluid masses acts on
other bodies of solar system. In the report the observable phenomena of changes of subsoil waters on Mars and the Titan and their directed redistribution between northern and southern hemispheres are discussed. Changes of balance of liquid metane in lakes of the Titan, etc. Possible atmospheric and even a drainage exchange of liquid metane between southern and northern hemispheres of the Titan in present period.

References