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Abstract
The hot and extended thermospheres of close-in tran-
siting planets make them highly amenable to study by
transit observations at UV wavelengths. We discuss
the characteristics of the thermospheres of hydrogen-
rich close-in extrasolar giant planets (EGPs) in light of
recent observations and theoretical modeling. Results
from both global and one-dimensional (1D) models
demonstrate that the thermal state and photochemistry
of the upper atmosphere depends on the orbital dis-
tance a of the planet and the EUV flux of the host star.
At close-in orbits (a < 0.2 AU for a Sun-like star) the
atmosphere is composed of atoms and atomic ions at
p < 1 µbar and the temperature of the thermosphere is
T ∼ 10,000 K. Under these circumstances, the neutral
atmosphere extends to z ∼ 3 Rp and the atmosphere
evaporates with a mass loss rate that depends on the
heating efficiency.

1. Introduction
Transit observations in the FUV have led to the detec-
tion of hydrogen (H I), oxygen (O I), ionized carbon
(C II) and silicon (Si III) on HD209458b [7, 1, 6], and
the possible detections of H I on HD189733b. The
large transit depths of 5–10 % indicate that these ob-
servations probe extended thermospheres that extend
to several planetary radii and may escape hydrody-
namically. The HLy α transits are particularly inter-
esting because they probe the dominant species of the
neutral thermosphere. Here we discuss models that
can be used to explain the H I transit observations and
clarify such fundamental properties as optical depth,
the base of the outflow, temperature, composition, and
ionization of the EGP thermospheres.

2. Methods
We have used a global hydrostatic model [2] and 1D
outflow models ([8],Koskinen and Harris, in prep.) to
characterize the thermospheres of EGPs at different
orbital distances. These models are based on solv-

ing either the horizontal or vertical components of
the Navier-Stokes equations and they include realistic
heating, ionization, and photochemical calculations.
Guided by the results, we also constructed an empir-
ical model for the atmosphere of HD209458b with a
few free parameters that can be varied to fit the ob-
servations. Figure 1 illustrates the model atmosphere
and the important transition altitudes and parameters
that affect the appearance of the thermosphere during
transit.
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Figure 1: Empirical model for the thermosphere of
HD209458b [3]. The lower boundary at 1.08 Rp co-
incides with the H2/H dissociation front and the above
the upper boundary of ∼ 3 Rp most of the atmosphere
is ionized.

3. Results
We used the empirical model to fit the H Ly α trans-
mission curve for HD209458b [1] (see Figure 2). We
found that the H2/H dissociation front is located at
p ∼ 0.1 µbar or deeper and the temperature above this
level is T =8000–10,000 K. At z ∼ 2.9 Rp the atmo-
sphere becomes predominantly ionized. By introduc-
ing a solar proportion of oxygen, the model OI 1304
transit depth is 4.3 %, which lies within 1.4σ of the ob-
served low S/N transit depth of 10.5± 4.4 %. A larger

EPSC Abstracts
Vol. 5, EPSC2010-455, 2010
European Planetary Science Congress 2010
c© Author(s) 2010



O I transit depth is possible if the atmosphere escapes
hydrodynamically, the O/H ratio is supersolar, or sig-
nificant quantities of O I are present outside the Roche
lobe. Preliminary results indicate that a similar model
can explain the observed H I transit depth of ∼5 % for
HD189733b.

Figure 2: Transmission as a function of wavelength
at HLy α during the transit of HD209458b. The data
points are from [1] and the solid line shows our model
transmission [3]. The line-integrated transit depth is
6.6 %.

More complex models support the above results. In
our global and 1D models, almost all of the stellar
EUV radiation is absorbed at p < 1 µbar. This leads
to the dissociation of molecules, ionization, and heat-
ing of the thermosphere. The optical depth to EUV
radiation τ = 1 in the EUV ionization peak (EIP)
layer at p =1–10 nbar [4]. Above this level, the at-
mosphere may escape hydrodynamically at close-in
(a < 0.2 AU) orbits. The density profile deviates
significantly from hydrostatic equilibrium above the
critical level at z > 3 Rp. We note that the ther-
mospheres are significantly ionized. In the EIP layer,
the electron-neutral mixing ratio xe = 10−2–10−5 be-
tween a = 0.047–1 AU, and at close-in orbits the es-
caping atmosphere is predominantly ionized. The cou-
pling of the plasma to the neutral atmosphere must
therefore be considered properly in future modeling.

The density, temperature, and velocity profiles de-
pend on the heating efficiency, which in turn depends
on the composition. Depending on the heating effi-
ciency, we obtain different escape velocities and mass
loss rates between dM/dt = 1010–1011 g s−1 for
HD209458b. In future modeling, the heating effi-

ciency for different planets should be calculated con-
sistently from detailed energy deposition rates. At
larger orbital distances (a > 0.2 AU), the dominant
species below the exobase is H2 because the EUV
flux is lower than at close-in orbits. Thus the thermo-
spheres are significantly cooler and the density in the
exosphere may not be high enough for hydrodynamic
escape to take place [2].

4. Summary and Conclusions
We have constructed an empirical model for the ther-
mospheres of close-in EGPs and used it to interpret
the detections of neutral hydrogen and oxygen atoms
around HD209458b. Our results are supported by sev-
eral first principles models that can be used to estimate
important transition altitudes and parameters that af-
fect the observable properties of the thermospheres of
EGPs.
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