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Abstract
The existence and stability of equilibrium points in the
elliptic restricted three body problem for electric sails
are investigated.

1. Introduction
An Electric Sail (ES) is an innovative propulsion sys-
tem that uses charged tethers to extract momentum
from the solar wind to produce a thrust without any
ejection of mass [1]. Recently, the dynamical behavior
of an ES within a two body problem has been investi-
gated. Here we study the behavior of an ES in an el-
liptic restricted three body problem (ER3BP). We start
with the dimensionless equation of motion in a syn-
odic pulsating frame, then we show the existence of
equilibrium points on the plane of motion of the two
massive bodies and study the positions and the stabil-
ity of some of these points.

2. Mathematical Model
Consider an ER3BP in which an infinitesimal object
(the spacecraft) is subjected to a force provided by an
ES and to the gravitational attraction due to the two
attractors of mass m1 and m2, with m2 ≤ m1.

Figure 1: Electric Sail in the ER3BP.

Assume that the propulsive acceleration aP relative to
m1 is purely radial and that it varies with the distance
as ρ−η

1 , with η = 7/6 [1].

Introduce a dimensionless pulsating synodic frame Tp

with axes parallel to the frame T (C; x, y, z), see
Fig. 1. Using the transformation 2̃ = 2/ρ [2], where
ρ is the distance between the attractors, the equation
of motion of the third body is:
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where ν, e, and a are the true anomaly, eccentricity,
and semimajor axis of the orbit of m2 with respect to
m1, ω̂ is the angular velocity unit vector, r̃‖ is the
component of r̃ along ω, µ , m2/(m1 + m2), β
is the sail lightness number, that is, the ratio between
the ‖aP ‖ and the gravitational acceleration due to m1

at ρ1 = a, and g , 1/(1 + e cos ν). The equilib-
rium solutions are obtained by enforcing the condi-
tions d2r̃/dν2 ≡ dr̃/dν = 0 into Eq. (1) [2]:
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It can be shown that, if e 6= 0, only solutions in the
plane of motion (z = 0) of the attractors are possible,
and that these solutions exist only if B , β/(ρ/a)η−2

is constant. Focus now our attention on the equilib-
rium points (triangular points) that are not aligned
with the attractors. From Eq. (2), the position of the
triangular points (in pair, by symmetry), for a given
value of B, is obtained from:
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Accordingly, the equilibrium points, see Fig. 2, are
placed on the circumference centered at m2 and with
unit radius. An increase of B brings the point closer
to m1, independently of µ. For example, an equilib-
rium point at a distance ρ̃1 ≈ 0.983 from m1 requires
B = 0.05, meaning that β must vary as per Fig. 3, if
one considers the Sun-[Earth+Moon] system. If one
introduces a perturbation of position δr̃ and velocity
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Figure 2: Locus of the triangular points and their po-
sitions as a function of parameter B.

Figure 3: Required variation of β to maintain a trian-
gular point at ρ̃1 = 0.983 in the Sun-[Earth+Moon]
system.

δṽ = d(δr̃)/dν, Eq. (1) can be linearized in a neigh-
borhood of an equilibrium point to check its stability.
The linearized equation can be written as a first-order
differential equation system in the form[

dx

dν

]
Tp

= M [x]Tp
(4)

where x = [δr̃, δṽ]T and M ∈ R6×6 is a ν-dependent
matrix.
Because the M entries are 2π-periodic, the stability of
(4) depends (by Floquet Theory) on the eigenvalues
λi of the monodromy matrix C = F(2π), where F(ν)
is the solution of Ḟ(ν) = M(ν)F(ν) with F(0) = I.
If |λi| ≤ 1 the system is stable. The latter condition
has been investigated via numerical integration. As-
suming ρ̃1 = 0.983, the stability of triangular points
is guaranteed for each pair of µ and e in the gray re-
gions of Fig. 4. For a given pair of µ and e, e.g. the
Sun-[Earth+Moon] system, all of the triangular equi-
librium points in Fig. 5 are stable.
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Figure 4: Regions of stability of the triangular points
at ρ̃1 = 0.983 in the µ− e plane.

Figure 5: Stable triangular points in the Sun-
[Earth+Moon] system.

3. Conclusions
The concept of generating equilibrium points in the
ER3BP by means of an ES has been developed. A
variable thrust, provided by the ES, is required to ob-
tain equilibrium points in a synodic pulsating frame.
These points are located on the plane of motion of the
two massive bodies.
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