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Introduction

Jupiter-family comets (JFCs) are a dynamically dis-
tinct group. One of the prime motivations behind stud-
ies of JFCs, is that their main source of origin has
been shown computationally to be the Kuiper belt re-
gion beyond Neptune. Therefore studying the nuclei
of these comets, as well as their coma species, can pro-
vide valuable insights into the nature of the km-sized
KBOs. These include their size distribution and inter-
nal structure. With surface colour measurements one
can study how their surfaces evolve from their journey
towards the inner solar system. See [1] for a detailed
review of this topic.

Unfortunately, most cometary nuclei tend to be both
small (radii ~ 1-3 km) and dark (albedo ~ 4%), and
masked by the presence of gas and dust comae at
small heliocentric distances. Although the database
of physical parameters of asteroids continues to grow,
there exist only 8 JFC nuclei that have acceptable con-
straints on their albedos and physical properties [2].
JFC nuclei can be characterized either by observing
them when they are far enough from the Sun (typically
> 3 AU) that the sublimation levels are small or negli-
gible, or from high spatial resolution images obtained
from space-based telescopes.

A primary goal is to accumulate a large comprehen-
sive set of high quality physical data on cometary nu-
clei in order to make accurate statistical comparisons
with other minor-body populations such as near-Earth
asteroids, Centaurs, and Kuiper-belt objects (KBOs).
Information on the size, shape, spin-rate, albedo and
colour distributions is critical for understanding their

origins and evolutionary processes affecting them.

We present our latest analysis and results from
SEPPCoN, our Survey of Ensemble Physical Prop-
erties of Cometary Nuclei. This on-going survey
involves studying 100 JFCs — about 30% of the known
population — at both mid-infrared and visible wave-
lengths. We have used the Spitzer Space Telescope
to study the comets’ thermal emission, and many
large ground-based telescopes for extensive optical
monitoring.

Ground-Based Optical Campaign
As the Cycle 3 Spitzer observations were being taken
a large coordinated campaign was launched to observe
the Spitzer sample of JFCs using large ground based
telescopes in order to characterize, as much as possi-
ble, the physical properties of their nuclei at optical
wavelengths. This is important not only for constrain-
ing the albedo distribution of this population of comets
by linking with the Spitzer data, but also for deriving
more robust measurements of their size and rotation-
period distributions. In many cases time-series pho-
tometry was obtained thus reducing the uncertainties
in mean size due to unknown rotational phase inher-
ent to ‘snapshot’ measurements, while also allowing
an assessment to be made on the comets’ rotational
period. Others were monitored over several observing
runs, important for measuring phase-darkening curves.
So far we have been awarded ~40 nights of observ-
ing on the following facilities for this programme: Eu-
ropean Southern Observatory 3.58-m NTT and 8.2-m
VLT (Chile); Apache Point ARC 3.5-m (New Mex-



ico); 4.2-m William Herschel Telescope (La Palma,
Spain); Univ. of Hawaii 2.2-m and Keck 10-m on
Mauna Kea (Hawaii); Palomar 200-inch and 60 inch
telescopes (California); 2.6-m Nordic Optical Tele-
scope (La Palma, Spain); 2-m Liverpool Telescope
(La Palma, Spain); and the SOAR 4.1-m at Cerro
Pachon (Chile). To date we have attempted observa-
tions of 91% of our sample of 100 JFCs, at least 64
of those were successfully detected. Of those 64 de-
tected comets just 16 showed signs of outgassing. In
most cases the comets were at heliocentric distances
between 3.0 and 6.5 AU. This data set is further aug-
mented by archival data from the NEAT programme
[3]. The analysis of the optical data sets is on-going
and we will present an progress update on this and on
the analysis of the Spitzer data.
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Figure 1: Examples of processed optical R-band imag-
ing of three comets successfully detected at the ESO
3.6-m NTT telescope in May 2007. Comet Lovas 1
shows clear signs of activity, whereas comets NEAT
and Klemola appear unresolved.

Spitzer Large Programme

The Spitzer observations (imaging with IRS PU and
MIPS: 16 and 22 pm) are complete [4] [5]. Almost
all our targets were imaged while farther than 4 AU
from the Sun, to minimize (and often eliminate) con-
fusion caused by dust from cometary activity. The
Spitzer data constrain the effective radii of the nuclei
and we find, preliminarily, that the cumulative size dis-
tribution’s power-law slope is similar to what has been
found by others using visible wavelength studies, sug-
gesting that there is no strong trend of albedo with size.
The Spitzer data also tell us about the thermal inertia,
and we find that many — though not all — cometary nu-
clei seem to have low values, consistent with a porous,
fluffy, poorly-conducting, dusty surface layer. The
Spitzer images show that about one-third of our sam-
ple appeared with extended dust emission despite be-
ing close to aphelion. We find that JFCs are more
likely to be active post-perihelion, than pre-perihelion,
at least at these heliocentric distances (R; > 3 AU).
We have used dynamical analysis to constrain the dust
grain sizes and thereby distinguish dust tails from dust

trails. The dust temperatures are in most cases con-
sistent with isothermal, low-albedo grains in LTE. Re-
sults from Spitzer observations of two of our targets
were presented in [6] and [7].

Figure 2: Selected images from the Spitzer pro-
gramme (22-um). Left (68P/Klemola): Comet appears
as a sharp point source indicating that the nucleus
dominates the observed flux and that good constraints
can be placed on its size. Centre (173P/Mueller 5):
Here the comet displays some activity but good con-
straints can be placed on its size with further detailed
analysis. The Airy ring is clearly visible here, further
emphasizing the point-like nature of the central part of
the comet. Right (32P/Comas Sola): This comet’s vig-
orous activity severely limits what can be ascertained
about its nucleus properties.
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