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Abstract

The origin of the Martian moons remains an open is-
sue: asteroid capture versus in situ formation scenario.
Recently, a precise solution of the mass of Phobos has
been provided by the Mars Radio Science Experiment
(MaRS) onboard Mars Express (MEX). The estima-
tion of the bulk density of Phobos has been improved
and it supports the hypothesis of a highly porous in-
terior consistent with re-accretion early in its history.
This result does not directly address the question of
origin, but it provides additional support for in situ for-
mation models.

1. Introduction

Several past and present space missions have provided
new information regarding Phobos and Deimos, but
the question about the origin of these two bodies
remains open. It has been proposed that both moons
are asteroid captured by Mars’ gravitational attrac-
tion mainly on the basis of the similarities of their
reflectance spectra with those of some low-albedo
carbonaceous asteroids (e.g. [8] [12]). All capture
scenarios have, however, difficulties to explain the
current near-circular and near-equatorial orbit of both
moons [3]. Alternative scenarios of in situ formation
(or in circum-Mars’ orbit) include the remnants of
an earlier larger moon captured by Mars [15], the
re-accretion of large impact debris from Mars blasted
into Mars’ orbit [4], and co-accretion with Mars [10].
Several models imply that both moons are composed
of the same material as Mars, which is problematic
[8] [12]. Early determinations of the mass and volume
of the two moons were subject to systematic errors,
and yielded a large range of values for the density of
Phobos, from 1570 to 2200 kg/m3. The MEX mission
provided an opportunity to improve the determination
of the mass of Phobos [1] [13] and of the volume of
Phobos [16], yielding a precise determination of its

density of 1876 +/- 20 kg/m? [1]. In this work, we use
the improved density solution to estimate the porosity
of Phobos and discussed it with regard to the origin of
this moon.

2. Bulk density, porosity and origin
of Phobos

The low density of Phobos is comparable to the den-
sity of many low-albedo carbonaceous asteroids. The
density of these asteroids is lower than the density of
their meteorite analogs, which can be explained by a
large amount of porosity (or voids) in their interior
[2]. We have computed the bulk porosity inside Pho-
bos as the percentage of volume occupied by voids.
We have taken into account a large range of proba-
ble material analogue to Phobos’ material. Indeed, re-
cent Phobos’ spectra collected by the CRISM/MRO
[9] and OMEGA/MEX [6] cameras seem to indicate
a subdued signature either of carbonaceous or of sili-
cate components. We have found a porosity range of
25% to 45% depending on the chosen analogue ma-
terial (Fig. 1). This suggests a loosely consolidated
or ’gravitational aggregate’ structure for the interior of
Phobos. Such internal structure is supported by the
large impact crater Stickney. Indeed, large craters on
small bodies would require a large porosity in their in-
terior in order to absorb the energy of a large impact
without destroying the body [11].

Such large porosity inside Phobos provides new
constraints on the capture scenario. It has been shown
that the tidal evolution of Phobos orbit is too slow to
change an initial elliptical orbit in the ecliptic plane
into its current near-circular orbit in Mars’ equatorial
plane [7]. The tidal evolution of the orbit of a highly
porous body may be accelerated [5] but an unlikely
tidal dissipation rate into Phobos would be required
to account for its current orbit. Moreover, a highly
porous body is less resistant to the tidal torques exerted
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Figure 1: Estimate of bulk porosity inside Phobos
needed to fit its bulk density (black solid line).

by Mars preventing it to orbit too close to Mars. There-
fore, the initial elliptical orbit of such a body could not
be circularized by the drag effect in the primitive Mar-
tian atmosphere as proposed by [14]. On another hand,
the high porosity is in agreement with re-accretion of
material blasted into Mars’ orbit as proposed in [4]. As
the largest debris bodies re-accrete they block smaller
bodies, and form a core with large voids. The smaller
debris re-accrete later, but do not fill the gaps left be-
tween the boulders [11]. This scenario depends, how-
ever, on a Phobos formed of material from Mars. An
alternative scenario would imply an impact of an early
moon in Mars orbit with an asteroid [10].

3. Summary and Conclusions

The low density of Phobos, derived from the MEX es-
timate of its mass and its volume can be explained by a
high porosity content of 25%-45% in its interior. Such
a high porosity may likely result from the re-accretion
of material into Mars’ orbit, which is in agreement
with in situ formation scenario. The future Phobos-
Grunt mission due to launch in 2011 will allow identi-
fying the surface material of Phobos, thus will help to
answer the question about its origin.
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