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Abstract

We have analyzed reflectance spectra of Mercury’s
surface obtained by the Mercury Atmospheric and
Surface Composition Spectrometer instrument on
MESSENGER during the spacecraft’s first two
flybys of Mercury to characterize and distinguish
surface compositional units. We applied a statistical
technique to extract the underlying relationships
among units. Without applying photometric
corrections, we were able cluster surface
observations into different classes that correspond to
geomorphological units identified from
MESSENGER images, such as the smooth plains in
Rudaki crater and the heavily cratered neighboring
terrain. We then applied biconical reflectance spectra
from the DLR Planetary Emissivity Laboratory to
assess possible major constituents of Mercury surface
materials.

1. Introduction

During the first two MESSENGER flybys of
Mercury, the Mercury Atmospheric and Surface
Composition Spectrometer (MASCS) [1, 2] obtained
reflectance spectra of large areas of the planet’s
surface. The resulting dataset is composed of several
hundred spectra that have not yet been corrected for
effects of observing geometry or photometry. Under
the hypothesis that surface compositional information
can be efficiently separated from other contributions
by the use of statistical techniques, we have
employed principal component and clustering

analyses to identify and characterize spectral units
along the MASCS ground tracks.

2. Data Analysis

o
ﬂ‘(wﬁt'?ukwﬂhw

Reflectance

Eig. 2

Eig. 1

L FE— PR P B
400 600 800 1000
Wavelenght (nm)

Fig 1. Eigenvectors extracted for the entire
spectral range, each shifted by 0.01 in reflectance
for clarity.

To retrieve and characterize the number and spectral
shapes of the different components present in the
dataset, we apply principal component analysis
(PCA), a well-established technique in remote
sensing [3—5]. PCA expresses the data in a new
vectorial basis set, for which the data covariance is
minimized. PCA essentially reduces the
dimensionality of the dataset and allows modeling of
the data as a linear combination of the principal
components or eigenvectors. The dimensionality of



the new basis set measures the number of
components that influence the system.
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Fig. 2. Concentration coefficients extracted from
the C matrix corresponding to the first eigenvector
in Fig. 1. Color codes are relative to the distinct
clusters found with a hierarchical clustering
algorithm (see text and Fig. 4).

Finding the crossing point between principal and
secondary eigenvalues is thus a primary task of PCA.
In particular, we evaluated the eigenvalue ratio [3]
and the reconstruction error, and we inspected
visually the goodness of fit of spectra to the model.
Applying the covariance matrix decomposition,
spectra in the dataset are assembled in matrix form as

D=RC M

where D is the matrix of the data, R the matrix of
reconstruction vectors, and C the matrix of relative
concentration coefficients. The goal of PCA is to
decompose D into two matrices. R will consist of the
principal eigenvectors calculated from the covariance
matrix of D, Sp. There is no unique solution to this
problem, and it is a common situation in remote
sensing to have more equations than unknowns,
resulting in an overdetermined system. An estimation
of the vectors needed to reconstruct the data given
the noise is the essential step toward solving the
problem and converging on an accurate solution.
Because of the wide spectral range of the data, we
choose to apply the analysis to the entire range and
separately also to the visible (VIS) and the near-
infrared (NIR) channels, in order to monitor potential
differences in behavior between those portions of the
spectrum. Application to the full MASCS dataset
shows that in general seven eigenvectors are
sufficient to reconstruct the data within the error. The
eigenvectors obtained from an analysis only of the

VIS observations do not differ strongly from those
obtained with the full dataset. The extracted
eigenvectors for the entire spectral range are shown
in Fig. 1. A comparison of the two channels indicates
that the NIR portion is carrying significantly less
information than the VIS portion. Each spectral
eigenvector can be regarded as a representative of a
distinct spectral class that varies in abundance along
the track. The first eigenvector always displays a
strong positive or “red” slope, probably strongly
linked to effects associated with viewing geometry
variations, and all eigenvectors show distinctive
spectral signatures.

The concentration coefficients in the C matrix
indicate that spectral wunits show substantial
geographical variation.

Because we do not photometrically correct the data,
we can clearly see the dependence of the coefficients
on geometrical parameters (namely, emission angle
in Fig. 3). We apply a decorrelation technique to
partially remove dependence on observation angle in
the retrieved concentration coefficients. We construct
the matrix C’ as {cy,..., C,, €}, where ¢; are rows of C
and e is a vector of the emission angles. Sc-is then
the covariance matrix of C' and can be calculated
from

Se=n'C'THC )
where T denotes the transposition operator, 7 is the
number of columns of C, and H is the centering
matrix, defined as

H=1-n"J 3)
where I is the identity matrix and J is a matrix where
all elements equal 1. Finally, the transformed matrix
Z is defined by

Z=HC'Sc "? (4)
and is also called the Mahalanobis transform of

matrix C. It has the peculiar property that its
covariance matrix is the identity matrix

Sz=1 )
or, in other words, the rows and columns of Z are

decorrelated [9]. Now we can extract the first n rows
of Z that correspond to the eigenvectors of the
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Fig. 3. Concentration coefficients from matrix C versus the emission angle. (a) and (b) correspond to the
first and the fourth eigenvectors, respectively. (¢) and (d) are the corresponding rows from the Z matrix, that
is, the transformed C’ matrix. The strong dependency of the first coefficient on the emission angle is greatly
reduced after the transformation, whereas the fourth coefficient remains almost unchanged.

concentration coefficients in C'. Now we can extract
the first n rows of Z that correspond to the
eigenvectors of the concentration coefficients in C’
and in C. We thus obtain the decorrelated
concentration coefficients (or C via the Mahalanobis
transformation). This set does not satisfy the relation
(1) and therefore cannot linearly reconstruct the
original dataset. The decorrelation removes the main
variation directly linked to variations in illumination
and viewing geometry. Nevertheless, it retains a
variation (Fig. 4) along track that we suppose is the
result of actual variation in reflectance across the
surface. In particular, the locations of spectrally
distinct units correlate well with those inferred from
color imaging (Fig. 4). The DLR Planctary
Emissivity Laboratory (PEL) is in the final testing
phase for a new setup that will allow measurement of
emissivity at Mercury temperatures and wavelengths

near 1 mm [6]. In the meantime we make use of
newly available visiblenear-infrared (VNIR)
biconical reflectance spectra from PEL [7] to assist in
the identification of the possible constituents of each
spectral unit. We employ a target transformation (TT)
to seek linear combinations of the eigenvectors
estimated by PCA that yield a set of laboratory-
derived spectral components that can closely
reproduce the original spectra [8]. In practice, this
step is achieved by projecting a laboratory test
spectrum onto the space spanned by the eigenvectors
[3]. If the test spectrum fits within the dimensionality
of the data, it is a component of the system and a
possible spectral end-member and will be closely
reconstructed using a combination of the derived
eigenvectors. If not, it will be poorly reconstructed
by the -eigenvectors. In this way, the target



transformation presents a tool for identifying spectral
end-member components within a system.

Laboratory conditions are designed to mimic
observational parameters for spectra obtained at
Mercury. Moreover, mineral selection is based on
expectations for Mercury’s surface, as well as high-
temperature changes in behavior documented at PEL
for some materials.

6. Summary and Conclusions

We observed the presence of isolated spectral units
on Mercury that show a strong correlation with
surface units mapped by the MESSENGER imaging
system. At the same time, we have begun to make
use of the newly available VNIR biconical
reflectance  observations from our Planetary
Emissivity Laboratory as a basis for testing possible
surface constituents. We use these data as a
temporary substitute for upcoming high-temperature
measurements that will allow us to achieve more
precise results.
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Fig 4. Units found feeding the clustering algorithm with the subset of the Z matrix. The upper strip was calculated from
MASCS spectra and uses the same color code as in Fig. 2. The bottom strip, shifted for clarity, was calculated by
extracting the average MDIS reflectance value over pixels that fell on the MASCS footprints. The MDIS color code is
related to clusters found from separate clustering analysis. We note how the blue clusters from the upper strip and the
green cluster from the bottom strip are concentrated mainly within the Rudaki crater.



