
 

Abstract 
We have analyzed reflectance spectra of Mercury’s 
surface obtained by the Mercury Atmospheric and 
Surface Composition Spectrometer instrument on 
MESSENGER during the spacecraft’s first two 
flybys of Mercury to characterize and distinguish 
surface compositional units. We applied a statistical 
technique to extract the underlying relationships 
among units. Without applying photometric 
corrections, we were able cluster surface 
observations into different classes that correspond to 
geomorphological units identified from 
MESSENGER images, such as the smooth plains in 
Rudaki crater and the heavily cratered neighboring 
terrain. We then applied biconical reflectance spectra 
from the DLR Planetary Emissivity Laboratory to 
assess possible major constituents of Mercury surface 
materials. 

1. Introduction 
 

During the first two MESSENGER flybys of 
Mercury, the Mercury Atmospheric and Surface 
Composition Spectrometer (MASCS) [1, 2] obtained 
reflectance spectra of large areas of the planet’s 
surface. The resulting dataset is composed of several 
hundred spectra that have not yet been corrected for 
effects of observing geometry or photometry. Under 
the hypothesis that surface compositional information 
can be efficiently separated from other contributions 
by the use of statistical techniques, we have 
employed principal component and clustering 

analyses to identify and characterize spectral units 
along the MASCS ground tracks. 

2. Data Analysis 

To retrieve and characterize the number and spectral 
shapes of the different components present in the 
dataset, we apply principal component analysis 
(PCA), a well-established technique in remote 
sensing [3–5]. PCA expresses the data in a new 
vectorial basis set, for which the data covariance is 
minimized. PCA essentially reduces the 
dimensionality of the dataset and allows modeling of 
the data as a linear combination of the principal 
components or eigenvectors. The dimensionality of 

 

Fig 1. Eigenvectors extracted for the entire 
spectral range, each shifted by 0.01 in reflectance 
for clarity. 
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the new basis set measures the number of 
components that influence the system.  

Finding the crossing point between principal and 
secondary eigenvalues is thus a primary task of PCA. 
In particular, we evaluated the eigenvalue ratio [3] 
and the reconstruction error, and we inspected 
visually the goodness of fit of spectra to the model. 
Applying the covariance matrix decomposition, 
spectra in the dataset are assembled in matrix form as  

D = R C   (1) 

where D is the matrix of the data, R the matrix of 
reconstruction vectors, and C the matrix of relative 
concentration coefficients. The goal of PCA is to 
decompose D into two matrices. R will consist of the 
principal eigenvectors calculated from the covariance 
matrix of D, SD. There is no unique solution to this 
problem, and it is a common situation in remote 
sensing to have more equations than unknowns, 
resulting in an overdetermined system. An estimation 
of the vectors needed to reconstruct the data given 
the noise is the essential step toward solving the 
problem and converging on an accurate solution. 
Because of the wide spectral range of the data, we 
choose to apply the analysis to the entire range and 
separately also to the visible (VIS) and the near-
infrared (NIR) channels, in order to monitor potential 
differences in behavior between those portions of the 
spectrum. Application to the full MASCS dataset 
shows that in general seven eigenvectors are 
sufficient to reconstruct the data within the error. The 
eigenvectors obtained from an analysis only of the 

VIS observations do not differ strongly from those 
obtained with the full dataset. The extracted 
eigenvectors for the entire spectral range are shown 
in Fig. 1. A comparison of the two channels indicates 
that the NIR portion is carrying significantly less 
information than the VIS portion. Each spectral 
eigenvector can be regarded as a representative of a 
distinct spectral class that varies in abundance along 
the track. The first eigenvector always displays a 
strong positive or “red” slope, probably strongly 
linked to effects associated with viewing geometry 
variations, and all eigenvectors show distinctive 
spectral signatures. 

 The concentration coefficients in the C matrix 
indicate that spectral units show substantial 
geographical variation. 

Because we do not photometrically correct the data, 
we can clearly see the dependence of the coefficients 
on geometrical parameters (namely, emission angle 
in Fig. 3). We apply a decorrelation technique to 
partially remove dependence on observation angle in 
the retrieved concentration coefficients. We construct 
the matrix Cʹ′  as {c1,…, cn, e}, where ci are rows of C 
and e is a vector of the emission angles. SC’ is then 
the covariance matrix of Cʹ′  and can be calculated 
from 

SC’ = n-1 Cʹ′T H Cʹ′  (2) 

where T denotes the transposition operator, n is the 
number of columns of C, and H is the centering 
matrix, defined as 

H = I - n-1J  (3) 

where I is the identity matrix and J is a matrix where 
all elements equal 1. Finally, the transformed matrix 
Z is defined by 

Z = H Cʹ′SC’
−1/2  (4) 

and is also called the Mahalanobis transform of 
matrix C. It has the peculiar property that its 
covariance matrix is the identity matrix 

SZ= I  (5) 

or, in other words, the rows and columns of Z are 
decorrelated [9]. Now we can extract the first n rows 
of Z that correspond to the eigenvectors of the  

 

Fig. 2. Concentration coefficients extracted from 
the C matrix corresponding to the first eigenvector 
in Fig. 1. Color codes are relative to the distinct 
clusters found with a hierarchical clustering 
algorithm (see text and Fig. 4). 



 

concentration coefficients in Cʹ′ . Now we can extract 
the first n rows of Z that correspond to the 
eigenvectors of the concentration coefficients in Cʹ′  
and in C. We thus obtain the decorrelated 
concentration coefficients (or C via the Mahalanobis 
transformation). This set does not satisfy the relation 
(1) and therefore cannot linearly reconstruct the 
original dataset. The decorrelation removes the main 
variation directly linked to variations in illumination 
and viewing geometry. Nevertheless, it retains a 
variation (Fig. 4) along track that we suppose is the 
result of actual variation in reflectance across the 
surface. In particular, the locations of spectrally 
distinct units correlate well with those inferred from 
color imaging (Fig. 4). The DLR Planetary 
Emissivity Laboratory (PEL) is in the final testing 
phase for a new setup that will allow measurement of 
emissivity at Mercury temperatures and wavelengths 

near 1 mm [6]. In the meantime we make use of 
newly available visible–near-infrared (VNIR) 
biconical reflectance spectra from PEL [7] to assist in 
the identification of the possible constituents of each 
spectral unit. We employ a target transformation (TT) 
to seek linear combinations of the eigenvectors 
estimated by PCA that yield a set of laboratory-
derived spectral components that can closely 
reproduce the original spectra [8]. In practice, this 
step is achieved by projecting a laboratory test 
spectrum onto the space spanned by the eigenvectors 
[3]. If the test spectrum fits within the dimensionality 
of the data, it is a component of the system and a 
possible spectral end-member and will be closely 
reconstructed using a combination of the derived 
eigenvectors. If not, it will be poorly reconstructed 
by the eigenvectors. In this way, the target 

a.  b.  

c.  d.  

Fig. 3.  Concentration coefficients from matrix C versus the emission angle. (a) and (b) correspond to the 
first and the fourth eigenvectors, respectively. (c) and (d) are the corresponding rows from the Z matrix, that 
is, the transformed Cʹ′  matrix. The strong dependency of the first coefficient on the emission angle is greatly 
reduced after the transformation, whereas the fourth coefficient remains almost unchanged. 



transformation presents a tool for identifying spectral 
end-member components within a system. 

Laboratory conditions are designed to mimic 
observational parameters for spectra obtained at 
Mercury. Moreover, mineral selection is based on 
expectations for Mercury’s surface, as well as high-
temperature changes in behavior documented at PEL 
for some materials. 

6. Summary and Conclusions 
We observed the presence of isolated spectral units 
on Mercury that show a strong correlation with 
surface units mapped by the MESSENGER imaging 
system. At the same time, we have begun to make 
use of the newly available VNIR biconical 
reflectance observations from our Planetary 
Emissivity Laboratory as a basis for testing possible 
surface constituents. We use these data as a 
temporary substitute for upcoming high-temperature 
measurements that will allow us to achieve more 
precise results. 
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Fig 4. Units found feeding the clustering algorithm with the subset of the Z matrix. The upper strip was calculated from 
MASCS spectra and uses the same color code as in Fig. 2. The bottom strip, shifted for clarity, was calculated by 
extracting the average MDIS reflectance value over pixels that fell on the MASCS footprints. The MDIS color code is 
related to clusters found from separate clustering analysis. We note how the blue clusters from the upper strip and the 
green cluster from the bottom strip are concentrated mainly within the Rudaki crater. 

 


