
Spectral representation of the tide-generating potential and
the inducing magnetic potential on the Galilean satellites

A. Trinh (1,2), V. Dehant (1) and T. Van Hoolst (1)
(1) Royal Observatory of Belgium, Belgium, (2) Also at: Earth and Life Institute, Georges Lemaître Centre for Earth and
Climate Research, Université Catholique de Louvain, Belgium (a.trinh@oma.be)

Abstract

Å

�

r'

±r1

rN

r
�

r"

r

r' - r"

r
�

- r"

rN - r
�

r - r"

Figure 1: A planet surrounded by celestial bodies.

Celestial bodies in the neighbourhood of a ‘planet’
(in the loose sense of the word, so applying to the
Galilean satellites as well) generate, by their gravi-
tational field, gravity field variations, tides and rota-
tion perturbations on the planet, and affect the tra-
jectory of orbiting artificial satellites (figure 1). The
magnetic field surrounding some of these neighbours,
if time-varying as viewed from the planet, does also
induce magnetic field variations on the planet, pro-
vided it contains a layer of conductive material. The
magnitude of these effects depends on properties of
the planet’s interior, yielding a convenient way to
study the interior. In planetary sciences, the gravi-
tational and magnetic ‘perturbations’ induced by the
neighbours are mathematically represented by a tide-
generating potential and an inducing magnetic poten-
tial in some planetary reference frame moving with the
planet. For theoretical purposes, it is desirable that
they be expressed in the form of harmonic (or Pois-
son) series.

For a limited number of planets, accurate tide-
generating potentials have been built, either from ana-
lytical ephemerides (such as VSOP87 [2]) in Cartesian

or spherical coordinates using Poisson series manipu-
lators (e.g. [6], [9]), or from numerical ephemerides
(such as DE405 [8]) along with spectral analysis meth-
ods (e.g. [4]).

In general, approximate tide-generating potentials
may be readily obtained from the neighbours’ mean
orbital elements (e.g. [3]). These orbital elements are
usually referred to the planetary reference frame, and
may therefore undergo very large variations if a neigh-
bour and the planet do not actually orbit each other.
A better way then is to choose intermediate points so
as to split the neighbour’s motion into perturbed two-
body motions (this is possible if the planetary system
is hierarchised). Furthermore, it is common to assume
that the planet and its neighbours rotate uniformly and
are spherically symmetric (see [1] for a generalisation
to extended bodies). These approximations are not al-
ways sufficient: for instance, how strong is the influ-
ence of Jupiter’s flattening J2 on the Galilean satel-
lites?

A similar method may be used to determine the
spectrum of the inducing magnetic potential (we only
address that part of the spectrum which arises from the
astronomical motions, so we do not deal with plasma
effects, e.g. in the planet’s ionosphere; see [7] for
a comprehensive investigation of the spectrum of the
Galilean satellites’ magnetic field).

From a restricted set of physical and geometric
quantities (planetopotential and magnetic potential
multipolar coefficients, and mean orbital and rota-
tional elements), it is thus possible to compute, in a
general setting, the approximate spectrum of the tide-
generating and inducing magnetic potentials, and we
apply this method to the Galilean satellites.

Example: Europa’s gravity
As an example, we computed the tide-generating po-
tential on Europa induced by Jupiter, Io, Ganymede,
Callisto, the Sun, and Saturn. The celestial bod-
ies are assumed to be uniformly rotating and we use
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the mean orbital elements of the two-body systems
Jupiter-Europa (mean motion nE), Jupiter-Io (mean
motion nI ' 2nE), Jupiter-Ganymede (mean motion
nG ' nE/2), Jupiter-Callisto, Sun-Jupiter, and Sun-
Saturn.
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Figure 2: Europa’s ‘surface’ gravity (along the surface
of a sphere of radius RE).
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Figure 3: Europa’s surface tidal deformation.
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E→ Europa’s mean gravitational field
e → time-dependent (tidal) part of Europa’s gravitational field
Ω→ Europa’s centrifugal field
J → tide-generating field induced by a spherical Jupiter
j → additional (non-central) contribution of Jupiter
I → tide-generating field induced by a spherical Io
G→ tide-generating field induced by a spherical Ganymede
For non-zonal components, positive frequencies are prograde

oscillations and negative frequencies are retrograde oscillations.

Europa’s tidal deformation, mainly resulting from
Jupiter’s attraction, is responsible for mass redistribu-
tion and variations in Europa’s gravitational field. Fig-
ure 2 shows the amplitude spectrum of the radial com-

ponent of Europa’s surface gravity field (normalised
to Europa’s mean surface gravity) for a typical value
k2 = 0.25 of Europa’s surface Love number k2. Fig-
ure 3 shows the amplitude spectrum of the radial com-
ponent of Europa’s (second-degree) surface tidal dis-
placement for a typical value h2 = 1.20 of Europa’s
surface Love number h2. The contributions of Cal-
listo, the Sun and Saturn lie out of the plot range (be-
low 10−9gE and 1 mm).

We see that the contribution from the non-central
part of Jupiter’s gravitational field is comparable to the
contributions from Io and Ganymede.

The L1 ephemerides [5] and refined rotation models
may be used to improve the accuracy of these results.
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