EPSC Abstracts
Vol. 7 EPSC2012-108-4 2012
European Planetary Science Congress 2012
© Author(s) 2012

Instrument Study of the Lunar Dust Experiment (LDX) for the ESA Lunar Lander

Y.W. Li (1,2,3), D. Crongeyer (1), G. Herdrich (1), S. Kempf (4), Z. Sternovsky(4), Y.Y. Wu(2) and R. Srama(1,3) (1) IRS, University of Stuttgart, Pfaffenwaldring 29,70569 Stuttgart, Germany, (2) Harbin Institute of Technology, Xidazhi 92,150001, Harbin, China, (3) Max-Planck Institute of Nuclear Physics, Spfercheckweg 1, 69117, Heidelberg, Germany, (4) LASP, University of Colorado, Boulder, CO 80309-0392, USA. (li@irs.uni-stuttgart.de,srama@irs.uni-stuttgart.de)

Abstract

The future exploration of the lunar surface by an E-SA lander requires the measurement of dust transport phenomena above the surface. Therefore an instrument study investigates the properties of a dust sensor (LDX) with low mass which is based on charge induction. In this work, we used simulation software Coulomb V91 to study the possible charge signals for the dust detector-LDX. Lunar Dust eXplorer (LDX) is a hybrid trajectory sensor, with two instruments, one is used for the detection of lunar dust rising from lunar surface and the other one is used for the dust transmitting through horizontal direction of lunar surface. A dust detector landing on lunar surface supports a direct way to study this process. The Coulomb V91 software was used as a tool to simulate the induced charge signals, when a charged ejecta particle flies through LDX grid segments and wires. Grain trajectories close to the wall and to segment edges have a strong influence to the signal shapes. The wires diameters and total number of wires both influence the signal values of wires plant. A relatively better result comes out from the plate with 40 wires (0.1mm in diameter). According to our results, LDX provides a trajectory resolution of approx. 4 degrees for dust flying through the horizontal direction, and for the dust rising from lunar surface, this value is about 25 degrees.

References

[1] S. Auer, and E. Grün et al. Characteristics of a dust trajectory sensor. Review of Scientific Instruments, 2008.