

The Optical Depth Sensor (ODS) in the DREAMS package onboard the Exomars Entry Descent and Landing Demonstrator Module

P. Rannou (1), J.-P Pommereau (2), A. Sarkissian (2) and T. Foujols (2)

(1) GSMA, Université de Reims Champagne-Ardenne, FRANCE, (2) LATMOS, Université de Versailles-St-Quentin (pascal.rannou@univ-reims.fr)

Abstract

The optical depth sensor (ODS) is designed to retrieve the optical depth of the dust layer and to characterize the high altitude clouds on Mars. It was developed initially for the mission MARS 96, and also was included in the payload of several other missions. The sensor was finally built and used for a field experiment in Africa in order to validate the concept and test the performance. In this work we present main principle of the retrieval, the instrumental concept and the result of the tests performed during the 2004-2005 winter field experiment. It is now included in the package DREAM, which is part of the payload of the EDM on Mars 2016 and associated to two terrestrial campaigns, in tropical environment (Brasil) and in the arctic environment.

1. Introduction

On Mars, like on Earth, dust and clouds play an important role on meteorology and climate. On Earth: high altitude thin sub-visible cirrus clouds near the tropical tropopause are important players of the hydration / dehydration of the stratosphere, while Saharan and Asian mineral dust play a key role in the radiative transfer in the upper troposphere. On Mars: in the absence of condensed water and precipitation, dust lifted by storms is controlling the radiative balance of the atmosphere and are the unique condensation nuclei available. Its seasonal cycle is known to show a strong inter annual variability. The capacity of ODS is the monitoring of dust optical thickness and size distribution on a daily basis as well as the detection of the altitude and opacity of high altitude sub-visible cirrus at twilight. On Mars, ODS was onboard Mars 96, then selected on Netlander, on the Scout project Pascal, and currently part of the Atmosphere Environmental Package

(AEP) on the Humboldt Station of the ESA Exomars Mission [1]. On Earth, ODS prototype (Figure 1) deployed in West Africa sahel region in Ouagadougou, Burkina Faso next to a AERONET station, and later in Brasil during the campaign Tro-Pico.

2. Principle of the measurement

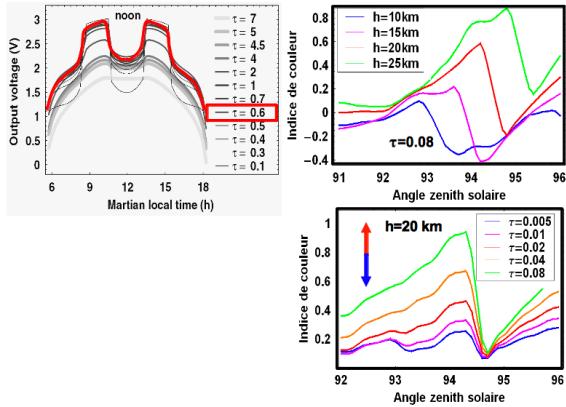

For the dust : opacity is retrieved by comparing the flux scattered by the atmosphere, and the sum of the scattered + the direct solar flux, observed from the surface. The ratio of these two fluxes depends on the total dust opacity. It is independent of any absolute calibration. For the clouds : Color index (C.I = I_{RED} / I_{BLUE}) with two channels. When high altitude clouds are present, they produce a peak in the time variation of C.I at the twilight (Figure 2)[2,3].

Figure 1: Optical head of the ODS instrument. The total weight of the instrument for two channels is 63 g : 28 g for the optical head and 35 g for the electronics [1].

In this poster presentation, we will present the procedures used to retrieve the dust optical dust and the high altitude cirrus altitude and opacity. Such procedures were used to analyze the data taken

during the Ouagadougou field campaign. We then show our results concerning cloud properties and the dust optical depth in various environment. The observations are also compared with other instruments operating during the same campaigns.

Figure 2: Left : example of output voltage modelled for one martian day, for several dust optical thickness. The red curve shows how the shape of a measured signal can be fitted with this database and can give the value of τ .) Right: variation of the color index (difference of voltages $U_{\text{red}} - U_{\text{blue}}$) as a function of time for several values of cloud altitude ($z_c = h$) and with a constant value of $\tau_c = 0.08$ (top figure) and for several values of τ_c (top figure) with a constant value of $z_c = h = 20$ km (bottom figure).

We will also show the type of information that are possible to obtain in martian environment, concerning the dust and cloud layers [3].

References

- [1] Maria et al., "Technical aspects of the optical depth sensor", *Adv. Space Res.*, 38, 726–729, (2006)
- [2] Tran et al., "Scientific aspects of the optical depth sensor", *Adv. Space Res.*, 36, 2182-2186 (2005)
- [3] Tran The-Trung, "Optical Depth Sensor for the measurement of dust and clouds in the atmosphere of Mars. Radiative transfer simulations and validation on Earth", Rapport de thèse, Université de Versailles-St-Quentin, (2005.) <http://ods.projet.latmos.ipsl.fr/Sciences/These.pdf>